Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PICK1 uncoupling from mGluR7a causes absence-like seizures

Abstract

Absence epilepsy is a neurological disorder that causes a recurrent loss of consciousness and generalized spike-and-wave discharges on an electroencephalogram (EEG). The role of metabotropic glutamate receptors (mGluRs) and associated scaffolding proteins in absence epilepsy has been unclear to date. We investigated a possible role for these proteins in absence epilepsy, focusing on the mGluR7a receptor and its PDZ-interacting protein, protein interacting with C kinase 1 (PICK1), in rats and mice. Injection of a cell-permeant dominant-negative peptide or targeted mutation of the mGluR7a C terminus, both of which disrupt the interaction between the receptor and PDZ proteins, caused behavioral symptoms and EEG discharges that are characteristic of absence epilepsy. Inactivation of the Pick1 gene also facilitated pharmacological induction of the absence epilepsy phenotype. The cortex and thalamus, which are known to participate in absence epilepsy, were involved, but the hippocampus was not. Our results indicate that disruption of the mGluR7a-PICK1 complex is sufficient to induce absence epilepsy–like seizures in rats and mice, thus providing, to the best of our knowledge, the first animal model of metabotropic glutamate receptor–PDZ protein interaction in absence epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro validation of the uncoupling between mGluR7a and PICK1 by the TAT–R7-LVI peptide.
Figure 2: Brain diffusion and mGluR7-PICK1 dissociating effect of in vivo–administered TAT peptides.
Figure 3: Concomitant bilateral cortical discharges induced by disruption of the interaction between mGluR7a and PDZ domain proteins by TAT–R7-LVI in vivo.
Figure 4: Region-specific absence seizures induced by disruption of mGluR7a-PDZ ligand interactions.
Figure 5: Absence-like seizures induced by local injection of TAT–R7-LVI peptide in either cortex or thalamus in the rat.
Figure 6: Pharmacology of TAT–R7-LVI–induced absence-like discharges.
Figure 7: Spontaneous discharges recorded from the mGluR7aAAA/AAA mouse.
Figure 8: Absence-like seizures induced by disruption of PICK1-PDZ ligand interaction.

Similar content being viewed by others

References

  1. Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bradley, S.R., Rees, H.D., Yi, H., Levey, A.I. & Conn, P.J. Distribution and developmental regulation of metabotropic glutamate receptor 7a in rat brain. J. Neurochem. 71, 636–645 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Kinoshita, A., Shigemoto, R., Ohishi, H., van der Putten, H. & Mizuno, N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J. Comp. Neurol. 393, 332–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Folbergrova, J., Haugvicova, R. & Mares, P. Seizures induced by homocysteic acid in immature rats are prevented by group III metabotropic glutamate receptor agonist (R,S)-4-phosphonophenylglycine. Exp. Neurol. 180, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gasparini, F. (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J. Pharmacol. Exp. Ther. 289, 1678–1687 (1999).

    CAS  PubMed  Google Scholar 

  6. Ghauri, M., Chapman, A.G. & Meldrum, B.S. Convulsant and anticonvulsant actions of agonists and antagonists of group III mGluRs. Neuroreport 7, 1469–1474 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Sansig, G. et al. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J. Neurosci. 21, 8734–8745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perroy, J. et al. Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J. Neurosci. 20, 7896–7904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lafon-Cazal, M. et al. mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. Eur. J. Neurosci. 11, 663–672 (1999a).

    Article  CAS  PubMed  Google Scholar 

  10. Pelkey, K.A., Lavezzari, G., Racca, C., Roche, K.W. & McBain, C.J. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 46, 89–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto, N. et al. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem. 269, 1231–1236 (1994).

    CAS  PubMed  Google Scholar 

  12. El Far, O. & Betz, H. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem. J. 365, 329–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertaso, F. et al. MacMARCKS interacts with the metabotropic glutamate receptor type 7 and modulates G protein–mediated constitutive inhibition of calcium channels. J. Neurochem. 99, 288–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. O'Connor, V. et al. Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science 286, 1180–1184 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dev, K.K. et al. PICK1 interacts with and regulates PKC phosphorylation of mGluR7. J. Neurosci. 20, 7252–7257 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirbec, H. et al. The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. J. Biol. Chem. 277, 15221–15224 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Boudin, H. et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 28, 485–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Perroy, J. et al. PICK1 is required for the control of synaptic transmission by the mGluR7 receptor. EMBO J. 21, 2990–2999 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burette, A., Wyszynski, M., Valtschanoff, J.G., Sheng, M. & Weinberg, R.J. Characterization of glutamate receptor interacting protein-immunopositive neurons in cerebellum and cerebral cortex of the albino rat. J. Comp. Neurol. 411, 601–612 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Dev, K.K. Making protein interactions druggable: targeting PDZ domains. Nat. Rev. Drug Discov. 3, 1047–1056 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Dietz, G.P. & Bahr, M. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull. 68, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Danober, L., Deransart, C., Depaulis, A., Vergnes, M. & Marescaux, C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. van Luijtelaar, E.L. & Coenen, A.M. Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci. Lett. 70, 393–397 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Frankel, W.N. et al. Development of a new genetic model for absence epilepsy: spike-wave seizures in C3H/He and backcross mice. J. Neurosci. 25, 3452–3458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pietrobon, D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr. Opin. Neurobiol. 15, 257–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Meeren, H., van Luijtelaar, G., Lopes da Silva, F. & Coenen, A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch. Neurol. 62, 371–376 (2005).

    Article  PubMed  Google Scholar 

  27. von Krosigk, M., Bal, T. & McCormick, D.A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, J. & Xia, J. Structure and function of PICK1. Neurosignals 15, 190–201 (2006–07).

    Article  CAS  PubMed  Google Scholar 

  29. El Far, O. et al. Interaction of the C-terminal tail region of the metabotropic glutamate receptor 7 with the protein kinase C substrate PICK1. Eur. J. Neurosci. 12, 4215–4221 (2000).

    CAS  PubMed  Google Scholar 

  30. Daw, M.I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Cao, G. et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science 298, 846–850 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hu, R.Q. et al. γ-hydroxybutyric acid-induced absence seizures in GluR2 null mutant mice. Brain Res. 897, 27–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Avanzini, G., de Curtis, M., Franceschetti, S., Sancini, G. & Spreafico, R. Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS. Epilepsy Res. 26, 37–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ramakers, G.M., Peeters, B.W., Vossen, J.M. & Coenen, A.M. CNQX, a new non-NMDA receptor antagonist, reduces spike wave discharges in the WAG/Rij rat model of absence epilepsy. Epilepsy Res. 9, 127–131 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Noebels, J.L., Qiao, X., Bronson, R.T., Spencer, C. & Davisson, M.T. Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res. 7, 129–135 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Letts, V.A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat. Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Mori, M., Burgess, D.L. & Noebels, J.L. Mutations in high voltage–activated calcium channel genes stimulate low voltage–activated currents in mouse thalamic relay neurons. J. Neurosci. 22, 6362–6371 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andre, V., Pineau, N., Motte, J.E., Marescaux, C. & Nehlig, A. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur. J. Neurosci. 10, 2094–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Dalezios, Y., Lujan, R., Shigemoto, R., Roberts, J.D. & Somogyi, P. Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals on interneurons in the rat somatosensory cortex. Cereb. Cortex 12, 961–974 (2002).

    Article  PubMed  Google Scholar 

  43. Somogyi, P. et al. High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur. J. Neurosci. 17, 2503–2520 (2003).

    Article  PubMed  Google Scholar 

  44. Wan, H. & Cahusac, P.M. The effects of L-AP4 and L-serine-O-phosphate on inhibition in primary somatosensory cortex of the adult rat in vivo. Neuropharmacology 34, 1053–1062 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, J.P. & Salt, T.E. Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro. J. Physiol. (Lond.) 519, 481–491 (1999).

    Article  CAS  Google Scholar 

  46. Alexander, G.M. & Godwin, D.W. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res. 71, 1–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Snead, O.C. III, Banerjee, P.K., Burnham, M. & Hampson, D. Modulation of absence seizures by the GABA(A) receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J. Neurosci. 20, 6218–6224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinberg, J.P. et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49, 845–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Paxinos, G., Watson, C., Pennisi, M. & Topple, A. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13, 139–143 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, D. et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α(1G) T-type Ca2+ channels. Neuron 31, 35–45 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Cohen-Solal for animal handling, M.-C. Rousset and M. Gien-Asari for assistance with immunohistochemistry and movie preparation, and A. Depaulis, B. Chanrion and C. Sharpe for helpful discussion. This work was supported by the Agence Nationale de la Recherche (ANR-05-NEURO-035 and ANR-06-NEURO-035), the Max-Planck-Gesellschaft, European Community (QLG3-CT-2001-00929), the Fonds der Chemischen Industrie and Ligue Française Contre l'Epilepsie (F.B.).

Author information

Authors and Affiliations

Authors

Contributions

F.B. and M.L.-N. conducted the experiments, F.d.B. and P.F. handled the softwares for data analyses, J.B. and L.F. supervised the project, P.M. contributed to the design of the TAT peptides, C.Z., A.S. and H.B. generated the mGluR7AAA/AAA mouse and R.L.H. generated the Pick1−/− mouse. F.B., M.L.-N., J.B., L.F., C.Z., A.S. and H.B. wrote the manuscript.

Corresponding author

Correspondence to Joël Bockaert.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 1536 kb)

Supplementary Movie 1

Movie and simultaneous EEG recording obtained 30 min after injection with 1 μmol TAT–R7-LVI (front rat) or TAT–R7-AAA (back rat). Note locomotor arrest and facial myoclonus in the front rat, as compared with normal exploratory activity of the control rat. (MOV 1135 kb)

Supplementary Movie 2

Movie and simultaneous EEG recording of absence-like behavior of an mGluR7aAAA/AAA mouse. Note a similar facial myoclonus and locomotor arrest as in TAT–R7-LVI–injected rat of Movie 1. (MOV 958 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaso, F., Zhang, C., Scheschonka, A. et al. PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat Neurosci 11, 940–948 (2008). https://doi.org/10.1038/nn.2142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2142

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing