Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development

Abstract

Bacteria use a process called quorum sensing to communicate and orchestrate collective behaviours, including virulence factor secretion and biofilm formation. Quorum sensing relies on the production, release, accumulation and population-wide detection of signal molecules called autoinducers. Here, we develop concepts to coat surfaces with quorum-sensing-manipulation molecules as a method to control collective behaviours. We probe this strategy using Staphylococcus aureus. Pro- and anti-quorum-sensing molecules can be covalently attached to surfaces using click chemistry, where they retain their abilities to influence bacterial behaviours. We investigate key features of the compounds, linkers and surfaces necessary to appropriately position molecules to interact with cognate receptors and the ability of modified surfaces to resist long-term storage, repeated infections, host plasma components and flow-generated stresses. Our studies highlight how this surface approach can be used to make colonization-resistant materials against S. aureus and other pathogens and how the approach can be adapted to promote beneficial behaviours of bacteria on surfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A strategy to quantify the Agr quorum-sensing responses of S. aureus to exogenously supplied agonists and antagonists.
Figure 2: S. aureus Agr quorum sensing is activated by surface-attached AIP-I.
Figure 3: A surface-attached Agr quorum-sensing antagonist, TrAIP-II, inhibits the S. aureus quorum-sensing response to AIP-I.
Figure 4: Wild-type S. aureus responds to surface-attached AIP-I and TrAIP-II.
Figure 5: Features of autoinducer-attached surfaces.

References

  1. Wang, B. & Muir, T. W. Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23, 214–224 (2016).

    Article  CAS  Google Scholar 

  2. Kong, K. F., Vuong, C. & Otto, M. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 296, 133–139 (2006).

    Article  CAS  Google Scholar 

  3. Drescher, K. et al. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl Acad. Sci. USA 113, E2066–E2072 (2016).

    Article  CAS  Google Scholar 

  4. Yan, J., Sharo, A. G., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc. Natl Acad. Sci. USA 113, E5337–E5343 (2016).

    Article  CAS  Google Scholar 

  5. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  Google Scholar 

  6. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  7. Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

    Article  CAS  Google Scholar 

  8. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  9. Dinges, M. M., Orwin, P. M. & Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34 (2000).

    Article  CAS  Google Scholar 

  10. Arvidson, S. & Tegmark, K. Regulation of virulence determinants in Staphylococcus aureus. Int. J. Med. Microbiol. 291, 159–170 (2001).

    Article  CAS  Google Scholar 

  11. Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    Article  CAS  Google Scholar 

  12. Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

    Article  CAS  Google Scholar 

  13. Ismail, A. S., Valastyan, J. S. & Bassler, B. L. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19, 470–480 (2016).

    Article  CAS  Google Scholar 

  14. O'Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013).

    Article  CAS  Google Scholar 

  15. Sully, E. K. et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 10, e1004174 (2014).

    Article  Google Scholar 

  16. Otto, M. Quorum-sensing control in Staphylococci—a target for antimicrobial drug therapy? FEMS Microbiol. Lett. 241, 135–141 (2004).

    Article  CAS  Google Scholar 

  17. Cegelski, L., Marshall, G. R., Eldridge, G. R. & Hultgren, S. J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6, 17–27 (2008).

    Article  CAS  Google Scholar 

  18. Kim, M. K., Ingremeau, F. B., Zhao, A., Bassler, B. L. & Stone, H. A. Local and global consequence of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).

    Article  CAS  Google Scholar 

  19. Lu, H. D. et al. Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles. Nano Lett. 15, 2235–2241 (2015).

    Article  CAS  Google Scholar 

  20. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    Article  CAS  Google Scholar 

  21. Kim, M. K., Drescher, K., Pak, O. S., Bassler, B. L. & Stone, H. A. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J. Phys. 16, 065024 (2014).

    Article  Google Scholar 

  22. Broderick, A. H. et al. Surface coatings that promote rapid release of peptide-based AgrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus. Adv. Healthc. Mater. 3, 97–105 (2014).

    Article  CAS  Google Scholar 

  23. Ho, K. K. K. et al. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry. Biomaterials 35, 2336–2345 (2014).

    Article  CAS  Google Scholar 

  24. Lowy, F. D. Staphylococcus aureus infections. New Engl. J. Med. 339, 2026–2027 (1998).

    Article  Google Scholar 

  25. Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46, S350–S359 (2008).

    Article  CAS  Google Scholar 

  26. Zhang, L. S., Gray, L., Novick, R. P. & Ji, G. Y. Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J. Biol. Chem. 277, 34736–34742 (2002).

    Article  CAS  Google Scholar 

  27. Wang, B. Y., Zhao, A. S., Novick, R. P. & Muir, T. W. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc. Natl Acad. Sci. USA 112, 10679–10684 (2015).

    Article  CAS  Google Scholar 

  28. Lina, G. et al. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28, 655–662 (1998).

    Article  CAS  Google Scholar 

  29. Wang, B. Y., Zhao, A. S., Novick, R. P. & Muir, T. W. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions. Mol. Cell 53, 929–940 (2014).

    Article  CAS  Google Scholar 

  30. Koenig, R. L., Ray, J. L., Maleki, S. J., Smeltzer, M. S. & Hurlburt, B. K. Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J. Bacteriol. 186, 7549–7555 (2004).

    Article  CAS  Google Scholar 

  31. Fechter, P., Caldelari, I., Lioliou, E. & Romby, P. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett. 588, 2523–2529 (2014).

    Article  CAS  Google Scholar 

  32. Lyon, G. J., Wright, J. S., Muir, T. W. & Novick, R. P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41, 10095–10104 (2002).

    Article  CAS  Google Scholar 

  33. Hong, V., Presolski, S. I., Ma, C. & Finn, M. G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009).

    Article  CAS  Google Scholar 

  34. Emilsson, G. et al. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl. Mater. Inter. 7, 7505–7515 (2015).

    Article  CAS  Google Scholar 

  35. Cisar, E. A., Geisinger, E., Muir, T. W. & Novick, R. P. Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Mol. Microbiol. 74, 44–57 (2009).

    Article  CAS  Google Scholar 

  36. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  Google Scholar 

  37. Traber, K. E. et al. Agr function in clinical Staphylococcus aureus isolates. Microbiology 154, 2265–2274 (2008).

    Article  CAS  Google Scholar 

  38. Khodaparast, S., Kim, M. K., Silpe, J. & Stone, H. A. Bubble-driven detachment of bacteria from confined microgeometries. Environ. Sci. Technol. 51, 1340–1347 (2017).

    Article  CAS  Google Scholar 

  39. Vasilev, K., Cook, J. & Griesser, H. J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 6, 553–567 (2009).

    Article  Google Scholar 

  40. Gallo, J., Holinka, M. & Moucha, C. S. Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 15, 13849–13880 (2014).

    Article  CAS  Google Scholar 

  41. Lee, J. J. et al. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2014).

    Article  Google Scholar 

  42. Boles, B. R. & Horswill, A. R. agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052 (2008).

    Article  Google Scholar 

  43. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122 (2003).

    Article  CAS  Google Scholar 

  44. Painter, K. L., Krishna, A., Wigneshweraraj, S. & Edwards, A. M. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 22, 676–685 (2014).

    Article  CAS  Google Scholar 

  45. Huycke, M. M., Spiegel, C. A. & Gilmore, M. S. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35, 1626–1634 (1991).

    Article  CAS  Google Scholar 

  46. Cook, L. C. & Federle, M. J. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol. Rev. 38, 473–492 (2014).

    Article  CAS  Google Scholar 

  47. Nakayama, J. et al. Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem. Biol. 8, 804–811 (2013).

    Article  CAS  Google Scholar 

  48. Gray, B., Hall, P. & Gresham, H. Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple Gram-positive bacterial infections. Sensors 13, 5130–5166 (2013).

    Article  CAS  Google Scholar 

  49. Fujii, T. et al. Two homologous agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J. Bacteriol. 190, 7655–7665 (2008).

    Article  CAS  Google Scholar 

  50. Wang, I. N., Smith, D. L. & Young, R. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54, 799–825 (2000).

    Article  CAS  Google Scholar 

  51. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  Google Scholar 

  52. Nadell, C. D., Drescher, K., Wingreen, N. S. & Bassler, B. L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 9, 1700–1709 (2015).

    Article  Google Scholar 

  53. Chen, J., Yoong, P., Ram, G., Torres, V. J. & Novick, R. P. Single-copy vectors for integration at the SaPI1 attachment site for Staphylococcus aureus. Plasmid 76, 1–7 (2014).

    Article  Google Scholar 

  54. Lyon, G. J., Mayville, P., Muir, T. W. & Novick, R. P. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc. Natl Acad. Sci. USA 97, 13330–13335 (2000).

    Article  CAS  Google Scholar 

  55. Charpentier, E. et al. Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Novick laboratory for providing S. aureus strains and plasmids. The authors thank N. Wingreen for discussions about heterogeniety, J. Yan for image analysis, B. Wang for discussion and mentoring in S. aureus genetic techniques, B. Bratton for discussions about single-molecule microscopy, I. Pelczer and K. Conover for the NMR measurements and D. Dabbs for help with the FTIR measurement. The authors acknowledge members of the B.L.B., H.A.S. and T.W.M. laboratories for suggestions. This work was supported by NSF grant MCB-1344191 (to B.L.B. and H.A.S.), the Howard Hughes Medical Institute, NIH grant 2R37GM065859 and NSF grant MCB-0948112 (to B.L.B.), NIH grant R01 AI042783 (to T.W.M.) and a STX fellowship (to M.K.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.K.K., H.A.S. and B.L.B. conceived the idea. M.K.K., A.Z., T.W.M., H.A.S. and B.L.B. designed the experiments. M.K.K. and A.Z. performed the majority of the experiments. A.W. helped with the solution assay. M.K.K., A.Z., A.W. and Z.Z.B. contributed new reagents/analytic tools. M.K.K., A.Z., T.W.M., H.A.S. and B.L.B. analysed the data. M.K.K., A.Z., H.A.S. and B.L.B. wrote the manuscript.

Corresponding authors

Correspondence to Howard A. Stone or Bonnie L. Bassler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–8; Supplementary Tables 1 and 2; Supplementary Note 1; Supplementary Methods; Supplementary References; colour-blind-friendly versions of Figures 1–5 and Supplementary Figures 1–8. (PDF 6644 kb)

Supplementary Video 1

S. aureus Agr quorum sensing is activated by surface attached AIP-I. Time series of merged fluorescence images of the S. Aureus reporter strain in the presence of Surface-PEG10000-triazole-AIP-I (top left), Surface-PEG10000-triazole-AIP-I + 2.5 μM TrAIP-II in solution (top right), Surface-PEG10000-azide (bottom left), and Surface-PEG10000-triazole LinearAIP-I (bottom right). The time interval between each image is 30 min. (AVI 2147 kb)

Supplementary Video 2

S. aureus Agr quorum sensing is inhibited by surface attached TrAIP-II. Time series of merged fluorescence images of the S. Aureus reporter strain in the presence of Surface-PEG10000-triazole-TrAIP-II + 30 nM AIP-I in solution (top left), SurfacePEG10000-triazole-TrAIP-II + 1 μM AIP-I in solution (top right), Surface-PEG10000-azide + 30 nM AIP-I in solution (bottom left), and Surface-PEG10000-triazole-Linear-TrAIP-II + 30 nM AIP-I in solution (bottom right). The time interval between each image is 30 min. (AVI 1750 kb)

Supplementary Video 3

Wild-type S. aureus responds to surface-attached AIPI and TrAIP-II. Time series of merged fluorescence images of wild-type S. aureus strain in the presence of Surface-PEG10000-azide (top left), SurfacePEG10000-triazole-AIP-I (top right), Surface-PEG10000-triazole-TrAIP-II (bottom left), and Surface-PEG10000-triazole-TrAIP-II + 1 μM AIP-I in solution (bottom right). The time interval between each image is 30 min. (AVI 1920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Zhao, A., Wang, A. et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol 2, 17080 (2017). https://doi.org/10.1038/nmicrobiol.2017.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing