Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational fidelity and mistranslation in the cellular response to stress

Abstract

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opportunities for mistranslation.
Figure 2: Aminoacylation and proofreading of tRNA.
Figure 3: Misacylation of tRNA can mask amino acid starvation.
Figure 4: Strategies for adaptation and survival.

Similar content being viewed by others

References

  1. Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol. Rev. 36, 1105–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kunkel, T. A. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74, 91–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kunkel, T. A. Biological asymmetries and the fidelity of eukaryotic DNA replication. Bioessays 14, 303–308 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Sung, W. et al. Evolution of the insertion-deletion mutation rate across the tree of life. G3 (Bethesda) 6, 2583–2591 (2016).

    Article  CAS  Google Scholar 

  5. Denamur, E. & Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol. 60, 820–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Imashimizu, M., Oshima, T., Lubkowska, L. & Kashlev, M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res. 41, 9090–9104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gout, J. F., Thomas, W. K., Smith, Z., Okamoto, K. & Lynch, M. Large-scale detection of in vivo transcription errors. Proc. Natl Acad. Sci. USA 110, 18584–18589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellis, N. & Gallant, J. An estimate of the global error frequency in translation. Mol. Gen. Genet. 188, 169–172 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Kurland, C. G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 26, 29–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Jakubowski, H. & Goldman, E. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev. 56, 412–429 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wohlgemuth, I., Pohl, C. & Rodnina, M. V. Optimization of speed and accuracy of decoding in translation. EMBO J. 29, 3701–3709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wohlgemuth, I., Pohl, C., Mittelstaet, J., Konevega, A. L. & Rodnina, M. V. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos. Trans. R Soc. Lond. B Biol. Sci. 366, 2979–2986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Delarue, M. Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol. 5, 48–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Perona, J. J. & Gruic-Sovulj, I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top. Curr. Chem. 344, 1–41 (2014).

    CAS  PubMed  Google Scholar 

  16. Paredes, J. A. et al. Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biol. 10, 55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fersht, A. R., Shindler, J. S. & Tsui, W. C. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases. Biochemistry 19, 5520–5524 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, M. & Schimmel, P. Structural analyses clarify the complex control of mistranslation by tRNA synthetases. Curr. Opin. Struct. Biol. 22, 119–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Guo, M. et al. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462, 808–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beebe, K., Ribas De Pouplana, L. & Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 22, 668–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bullwinkle, T. et al. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. eLife 2, e02501 (2014).

    Article  CAS  Google Scholar 

  22. Gao, X., Ma, Q. & Zhu, H. Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 99, 3341–3349 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Popp, O. et al. Molecular polygamy: the promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells. Biotechnol. Bioeng. 112, 1187–1199 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Bullwinkle, T. J. & Ibba, M. Translation quality control is critical for bacterial responses to amino acid stress. Proc. Natl Acad. Sci. USA 113, 2252–2257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bullwinkle, T., Lazazzera, B. & Ibba, M. Quality control and infiltration of translation by amino acids outside of the genetic code. Annu. Rev. Genet. 48, 149–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Sharma, G. S., Kumar, T., Dar, T. A. & Singh, L. R. Protein N-homocysteinylation: from cellular toxicity to neurodegeneration. Biochim. Biophys. Acta 1850, 2239–2245 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Rodgers, K. J. Non-protein amino acids and neurodegeneration: the enemy within. Exp. Neurol. 253, 192–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Giege, R. et al. Structure of transfer RNAs: similarity and variability. Wiley Interdiscip. Rev. RNA 3, 37–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Das, M., Vargas-Rodriguez, O., Goto, Y., Suga, H. & Musier-Forsyth, K. Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation. Nucleic Acids Res. 42, 3943–3953 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Giege, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherman, J. M., Rogers, M. J. & Soll, D. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Nucleic Acids Res. 20, 2847–2852 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aubee, J. I., Olu, M. & Thompson, K. M. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA 22, 729–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu, C., Begley, T. J. & Dedon, P. C. tRNA modifications regulate translation during cellular stress. FEBS Lett. 588, 4287–4296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nawrot, B., Sochacka, E. & Duchler, M. tRNA structural and functional changes induced by oxidative stress. Cell. Mol. Life Sci. 68, 4023–4032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swanson, R. et al. Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. Science 242, 1548–1551 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Gruic-Sovulj, I., Rokov-Plavec, J. & Weygand-Durasevic, I. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. FEBS Lett. 581, 5110–5114 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hati, S. et al. Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in “selective release” of noncognate amino acids. J. Biol. Chem. 281, 27862–27872 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Gruic-Sovulj, I., Uter, N., Bullock, T. & Perona, J. J. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J. Biol. Chem. 280, 23978–23986 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ibba, M. & Soll, D. Quality control mechanisms during translation. Science 286, 1893–1897 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds, N. M., Lazazzera, B. A. & Ibba, M. Cellular mechanisms that control mistranslation. Nat. Rev. Microbiol. 8, 849–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ling, J. et al. Resampling and editing of mischarged tRNA prior to translation elongation. Mol. Cell 33, 654–660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hussain, T. et al. Post-transfer editing mechanism of a d-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J. 25, 4152–4162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Routh, S. B. et al. Elongation factor Tu prevents misediting of Gly-tRNA(Gly) caused by the design behind the chiral proofreading site of D-aminoacyl-tRNA deacylase. PLoS Biol. 14, e1002465 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pawar, K. I. et al. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. eLife 6, e24001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peacock, J. R. et al. Amino acid-dependent stability of the acyl linkage in aminoacyl-tRNA. RNA 20, 758–764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kakhniashvili, D. G., Smailov, S. K. & Gavrilova, L. P. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA. FEBS Lett. 196, 103–107 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Stanzel, M., Schon, A. & Sprinzl, M. Discrimination against misacylated tRNA by chloroplast elongation factor Tu. Eur. J. Biochem. 219, 435–439 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Cathopoulis, T. J., Chuawong, P. & Hendrickson, T. L. Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs. Biochemistry 47, 7610–7616 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. LaRiviere, F. J., Wolfson, A. D. & Uhlenbeck, O. C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294, 165–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Dale, T. & Uhlenbeck, O. C. Amino acid specificity in translation. Trends Biochem. Sci. 30, 659–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Dale, T., Fahlman, R. P., Olejniczak, M. & Uhlenbeck, O. C. Specificity of the ribosomal A site for aminoacyl-tRNAs. Nucleic Acids Res. 37, 1202–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gromadski, K. B. & Rodnina, M. V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. McClory, S. P., Leisring, J. M., Qin, D. & Fredrick, K. Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. RNA 16, 1925–1934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Fluitt, A., Pienaar, E. & Viljoen, H. Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comput. Biol. Chem. 31, 335–346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, J., Ieong, K. W., Mellenius, H. & Ehrenberg, M. Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. RNA 22, 896–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruusala, T., Ehrenberg, M. & Kurland, C. G. Is there proofreading during polypeptide synthesis? EMBO J. 1, 741–745 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saint-Léger, A. & Ribas de Pouplana, L. The importance of codon-anticodon interactions in translation elongation. Biochimie 114, 72–79 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Ledoux, S., Olejniczak, M. & Uhlenbeck, O. C. A sequence element that tunes Escherichia coli tRNA(Ala)(GGC) to ensure accurate decoding. Nat. Struct. Mol. Biol. 16, 359–364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pang, Y. L., Abo, R., Levine, S. S. & Dedon, P. C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res. 42 e170 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Forman, M. D., Stack, R. F., Masters, P. S., Hauer, C. R. & Baxter, S. M. High level, context dependent misincorporation of lysine for arginine in Saccharomyces cerevisiae a1 homeodomain expressed in Escherichia coli. Protein Sci. 7, 500–503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lovmar, M. & Ehrenberg, M. Rate, accuracy and cost of ribosomes in bacterial cells. Biochimie 88, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Biswas, D. K. & Gorini, L. Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA's. J. Mol. Biol. 64, 119–134 (1972).

    Article  CAS  PubMed  Google Scholar 

  66. Stansfield, I. et al. Missense translation errors in Saccharomyces cerevisiae. J. Mol. Biol. 282, 13–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Roy, B., Leszyk, J. D., Mangus, D. A. & Jacobson, A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc. Natl Acad. Sci. USA 112, 3038–3043 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Precup, J., Ulrich, A. K., Roopnarine, O. & Parker, J. Context specific misreading of phenylalanine codons. Mol. Gen. Genet. 218, 397–401 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Parker, J. & Friesen, J. D. “Two out of three” codon reading leading to mistranslation in vivo. Mol. Gen. Genet. 177, 439–445 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Wiltrout, E., Goodenbour, J. M., Frechin, M. & Pan, T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10494–10506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tuite, M. F. & McLaughlin, C. S. The effects of paromomycin on the fidelity of translation in a yeast cell-free system. Biochim. Biophys. Acta 783, 166–170 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Londei, P., Altamura, S., Sanz, J. L. & Amils, R. Aminoglycoside-induced mistranslation in thermophilic archaebacteria. Mol. Gen. Genet. 214, 48–54 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Johnston, T. C. & Parker, J. Streptomycin-induced, third-position misreading of the genetic code. J. Mol. Biol. 181, 313–315 (1985).

    Article  CAS  PubMed  Google Scholar 

  74. Edelmann, P. & Gallant, J. Mistranslation in E. coli. Cell 10, 131–137 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Bouadloun, F., Donner, D. & Kurland, C. G. Codon-specific missense errors in vivo. EMBO J. 2, 1351–1356 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sarkar, J. & Martinis, S. A. Amino-acid-dependent shift in tRNA synthetase editing mechanisms. J. Am. Chem. Soc. 133, 18510–18513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz, M. H. & Pan, T. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Res. 44, 294–303 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Korencic, D. et al. A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc. Natl Acad. Sci. USA 101, 10260–10265 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ahel, I., Korencic, D., Ibba, M. & Söll, D. Trans-editing of mischarged tRNAs. Proc. Natl Acad. Sci. USA. 100, 15422–15427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, X. & Pan, T. Methionine mistranslation bypasses the restraint of the genetic code to generate mutant proteins with distinct activities. PLoS Genet. 11, e1005745 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ling, J. & Soll, D. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc. Natl Acad. Sci. USA 107, 4028–4033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, J. Y. et al. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J. Cell. Sci. 127, 4234–4245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl Acad. Sci. USA 93, 15036–15040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwartz, M. H., Waldbauer, J. R., Zhang, L. & Pan, T. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli. Nucleic Acids Res. 44, 10292–10303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Picard, F., Loubiere, P., Girbal, L. & Cocaign-Bousquet, M. The significance of translation regulation in the stress response. BMC Genomics 14, 588 (2013).

  89. Natarajan, K. et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347–4368 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nangle, L. A., De Crecy Lagard, V., Doring, V. & Schimmel, P. Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J. Biol. Chem. 277, 45729–45733 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Bacher, J. M., Waas, W. F., Metzgar, D., De Crecy-Lagard, V. & Schimmel, P. Genetic code ambiguity confers a selective advantage on Acinetobacter baylyi. J. Bacteriol. 189, 6494–6496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pezo, V. et al. Artificially ambiguous genetic code confers growth yield advantage. Proc. Natl Acad. Sci. USA 101, 8593–8597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl Acad. Sci. USA 111, 1132–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Su, H. W. et al. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat. Microbiol. 1, 16147 (2016).

  95. Miranda, I. et al. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. mBio 4 e00285–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sarkany, Z., Silva, A., Pereira, P. J. & Macedo-Ribeiro, S. Ser or Leu: structural snapshots of mistranslation in Candida albicans. Front. Mol. Biosci. 1, 27 (2014).

  97. Gomes, A. C. et al. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 8, R206 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bezerra, A. R. et al. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc. Natl Acad. Sci. USA 110, 11079–11084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kalapis, D. et al. Evolution of robustness to protein mistranslation by accelerated protein turnover. PLoS Biol. 13, e1002291 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li, L. et al. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc. Natl Acad. Sci. USA 108, 9378–9383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yadavalli, S. S. & Ibba, M. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code. Nucleic Acids Res. 41, 1104–1112 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Starosta, A. L., Lassak, J., Jung, K. & Wilson, D. N. The bacterial translation stress response. FEMS Microbiol. Rev. 38, 1172–1201 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V. Ribosome-dependent activation of stringent control. Nature 534, 277–280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Loveland, A. B. et al. Ribosome•RelA structures reveal the mechanism of stringent response activation. eLife 5, e17029 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hinnebusch, A. G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Mohler, K. et al. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 3985–3996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, J., Fan, Y. & Ling, J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res. 42, 6523–6531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valenzuela, L., Aranda, C. & Gonzalez, A. TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J. Bacteriol. 183, 2331–2334 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. John, M. Z., Xiaochen, W., Ronald, C. W. & Tao, P. Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem. 11, 29 (2010).

  110. Yang, R., Wek, S. A. & Wek, R. C. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20, 2706–2717 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo, J., Bryan, B. A. & Polymenis, M. Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae. Arch. Microbiol. 182, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Parker, J. & Precup, J. Mistranslation during phenylalanine starvation. Mol. Gen. Genet. 204, 70–74 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, Y. et al. Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy. Proc. Natl Acad. Sci. USA 111, 17570–17575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Bratulic, S., Gerber, F. & Wagner, A. Mistranslation drives the evolution of robustness in TEM-1 β-lactamase. Proc. Natl Acad. Sci. USA 112, 12758–12763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mohler, K. et al. MS-READ: quantitative measurement of amino acid incorporation. Biochim. Biophys. Acta. http://doi.org/10.1016/j.bbagen.2017.01.025 (2017).

    Article  CAS  Google Scholar 

  118. Mohler, K., Mann, R. & Ibba, M. Isoacceptor specific characterization of tRNA aminoacylation and misacylation in vivo. Methods 113, 127–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Loftfield, R. B. & Vanderjagt, D. The frequency of errors in protein biosynthesis. Biochem. J. 128, 1353–1356 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Khazaie, K., Buchanan, J. H. & Rosenberger, R. F. The accuracy of Qβ RNA translation. 1. Errors during the synthesis of Qβ proteins by intact Escherichia coli cells. Eur. J. Biochem. 144, 485–489 (1984).

    Article  CAS  PubMed  Google Scholar 

  121. Ruan, B. et al. Quality control despite mistranslation caused by an ambiguous genetic code. Proc. Natl Acad. Sci. USA 105, 16502–16507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meyerovich, M., Mamou, G. & Ben-Yehuda, S. Visualizing high error levels during gene expression in living bacterial cells. Proc. Natl Acad. Sci. USA 107, 11543–11548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Daviter, T., Gromadski, K. B. & Rodnina, M. V. The ribosome's response to codon-anticodon mismatches. Biochimie 88, 1001–1011 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Toth, M. J., Murgola, E. J. & Schimmel, P. Evidence for a unique first position codon-anticodon mismatch in vivo. J. Mol. Biol. 201, 451–454 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Curran, J. F. & Yarus, M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc. Natl Acad. Sci. USA 83, 6538–6542 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Calderone, T. L., Stevens, R. D. & Oas, T. G. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262, 407–412 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Tamura, K. Origins and early evolution of the tRNA molecule. Life (Basel) 5, 1687–1699 (2015).

    CAS  Google Scholar 

  128. El Yacoubi, B., Bailly, M. & De Crecy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. McKenney, K. M. & Alfonzo, J. D. From prebiotics to probiotics: the evolution and functions of tRNA modifications. Life (Basel) 6, E13 (2016).

    Google Scholar 

  130. Chan, C. T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

  131. Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16, 98–112 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Kelly and R. Mann for helpful comments on the manuscript. This work was supported by funding from the Army Research Office (W911NF1510105), the National Science Foundation (MCB1412611), the Ohio State University Center for RNA Biology Fellowship (to K.M.) and NIH Training Grant T32 GM086252 (to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ibba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohler, K., Ibba, M. Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol 2, 17117 (2017). https://doi.org/10.1038/nmicrobiol.2017.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing