Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)

Abstract

We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of STINT-NMR methodology.
Figure 2: NMR spectra and interaction maps of ubiquitin-ligand complexes.

Similar content being viewed by others

References

  1. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  2. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

    Article  CAS  Google Scholar 

  3. Gerstein, M. Integrative database analysis in structural genomics. Nat. Struct. Biol. 7 (Suppl.), 960–963 (2000).

    Article  CAS  Google Scholar 

  4. Serber, Z. & Dotsch, V. In-cell NMR spectroscopy. Biochemistry 40, 14317–14323 (2001).

    Article  CAS  Google Scholar 

  5. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  6. Zuger, S. & Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol. 23, 736–740 (2005).

    Article  Google Scholar 

  7. Pickart, C.M. & Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  Google Scholar 

  8. Di Fiore, P.P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat. Rev. Mol. Cell Biol. 4, 491–497 (2003).

    Article  CAS  Google Scholar 

  9. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  Google Scholar 

  10. Shekhtman, A. & Cowburn, D. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem. Biophys. Res. Commun. 296, 1222–1227 (2002).

    Article  CAS  Google Scholar 

  11. Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14, 3675–3689 (2003).

    Article  CAS  Google Scholar 

  12. Fisher, R.D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278, 28976–28984 (2003).

    Article  CAS  Google Scholar 

  13. Young, P., Deveraux, Q., Beal, R.E., Pickart, C.M. & Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461–5467 (1998).

    Article  CAS  Google Scholar 

  14. Groll, M., Bochtler, M., Brandstetter, H., Clausen, T. & Huber, R. Molecular machines for protein degradation. ChemBioChem. 6, 222–256 (2005).

    Article  CAS  Google Scholar 

  15. Riek, R., Pervushin, K. & Wuthrich, K. TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to A.S. (American Diabetes Association Career Development Award 1-06-CD-23) and to D.C. (National Institutes of Health 2R01GM047021-13A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shekhtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SDS-PAGE of ubiquitin and STAM2 sequential expression. (PDF 207 kb)

Supplementary Fig. 2

Overlay of 1H{15N}HSQC-spectra of E. coli cells after 3 hour over-expression of [U-, 15N] AUIM and 0 h (red), 2h (yellow), and 3 h (blue) over-expression of ubiquitin. (PDF 136 kb)

Supplementary Fig. 3

Overlay of 1H{15N}HSQC-spectra of E. coli cells after 3 hour over-expression of [U-, 15N] ubiquitin (red) and purified [U-, 15N] ubiquitin (black) in 10 mM phosphate buffer [pH 6.8]. (PDF 146 kb)

Supplementary Fig. 4

Overlay of 1H{15N}HSQC-spectra of E. coli cells after 3 hour over-expression of [U-, 15N] ubiquitin and 0 h (red), 2h (blue), and 3 h (yellow) over-expression of mutant AUIM (SA16). (PDF 117 kb)

Supplementary Fig. 5

Differential broadening of selected peaks from the 1H{15N}HSQC-spectrum of E. coli cells after 3 hour overexpression of [U-, 15N] ubiquitin and 0 h (red), 2 h (blue), and 3 h (green) overexpression of STAM2. (PDF 195 kb)

Supplementary Fig. 6

1H{15N}HSQC-spectrum of the supernatant of the NMR sample after E. coli cells over-expressing [U-15N] ubiquitin were removed by centrifugation. (PDF 104 kb)

Supplementary Fig. 7

1H{15N}HSQC-spectrum of the E. coli cells grown on [U-15N] M9 medium without protein over-expression. (PDF 89 kb)

Supplementary Methods (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burz, D., Dutta, K., Cowburn, D. et al. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3, 91–93 (2006). https://doi.org/10.1038/nmeth851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing