Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuously tunable nucleic acid hybridization probes

Abstract

In silico–designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0–100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tuning the affinity-selectivity tradeoff for hybridization probes.
Figure 2: Stoichiometric tuning for capture-yield uniformity.
Figure 3: Optimizing SNV discrimination using stoichiometric tuning.
Figure 4: Independent stoichiometric tuning in multiplex assays.
Figure 5: Multiplexed RNA quantitation with the Nanostring nCounter.

Similar content being viewed by others

References

  1. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    Article  CAS  Google Scholar 

  2. Newton, C.R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516 (1989).

    Article  CAS  Google Scholar 

  3. Beadling, C. et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J. Mol. Diagn. 15, 171–176 (2013).

    Article  CAS  Google Scholar 

  4. Mardis, E.R. A decade's perspective on DNA sequencing technology. Nature 470, 198–203 (2011).

    Article  CAS  Google Scholar 

  5. Shendure, J. & Aiden, E.L. The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094 (2012).

    Article  CAS  Google Scholar 

  6. 1000 Genomes Project Consortium. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  7. Zhang, D.Y., Chen, S.X. & Yin, P. Thermodynamic optimization of nucleic acid hybridization specificity. Nat. Chem. 4, 208–214 (2012).

    Article  CAS  Google Scholar 

  8. Wang, J.S. & Zhang, D.Y. Simulation-guided probe design for consistently ultraspecific hybridization. Nat. Chem. 7, 545–553 (2015).

    Article  CAS  Google Scholar 

  9. Bonnet, G., Tyagi, S., Libchaber, A. & Kramer, F.R. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA 96, 6171–6176 (1999).

    Article  CAS  Google Scholar 

  10. Owczarzy, R., Moreira, B.G., You, Y., Behlke, M.A. & Walder, J.A. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry 47, 5336–5353 (2008).

    Article  CAS  Google Scholar 

  11. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article  CAS  Google Scholar 

  12. Teer, J.K. et al. Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res. 20, 1420–1431 (2010).

    Article  CAS  Google Scholar 

  13. Zheng, Z. et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 20, 1479–1484 (2014).

    Article  CAS  Google Scholar 

  14. Deigan, K.E., Li, T.W., Mathews, D.H. & Weeks, K.M. Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  Google Scholar 

  15. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  Google Scholar 

  16. SantaLucia, J. & Turner, D.H. Measuring the thermodynamics of RNA secondary structure formation. Biopolymers 44, 309–319 (1997).

    Article  CAS  Google Scholar 

  17. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  18. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  Google Scholar 

  19. Clark, M.J. et al. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 29, 908–914 (2011).

    Article  CAS  Google Scholar 

  20. Kim, S. & Misra, A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9, 289–320 (2007).

    Article  CAS  Google Scholar 

  21. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  22. Geiss, G.K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    Article  CAS  Google Scholar 

  23. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  Google Scholar 

  24. Altan-Bonnet, G. & Kramer, F.R. Nucleic acid hybridization: robust sequence discrimination. Nat. Chem. 4, 155–157 (2012).

    Article  CAS  Google Scholar 

  25. Zhang, D.Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  26. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  Google Scholar 

  27. Pregibon, D.C., Toner, M. & Doyle, P.S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  Google Scholar 

  28. Das, J. et al. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat. Chem. 7, 569–575 (2015).

    Article  CAS  Google Scholar 

  29. Endo, T., Kerman, K., Nagatani, N., Takamura, Y. & Tamiya, E. Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 77, 6976–6984 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J.H. Bae for assisting with qPCR instrument correction. This work was partially funded by the Rice University Department of Bioengineering startup fund (to D.Y.Z.), the US National Institutes of Health (grant EB015331 to D.Y.Z.) and the Nanostring Technologies R&D team.

Author information

Authors and Affiliations

Authors

Contributions

L.R.W., J.S.W. and D.Y.Z. conceived the project and performed theoretical analysis on stoichiometric tuning. L.R.W., J.S.W., E.R.E., J.Z.F., A.P., I.P., R.B., C.N., P.J.W. and D.Y.Z. designed and conducted experiments. L.R.W., J.S.W., J.Z.F., A.P., I.P., R.B., C.N., P.J.W., J.B. and D.Y.Z. analyzed the data. L.R.W., J.S.W. and D.Y.Z. wrote the paper with input from all authors.

Corresponding author

Correspondence to David Yu Zhang.

Ethics declarations

Competing interests

There are two patents pending on this work (PCT/US14/52827 and US provisional 62/148,555). J.S.W. and D.Y.Z. are significant equity holders of Searna Technologies. I.P., R.B., C.N., P.J.W. and J.B. are employees of Nanostring Technologies.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–15 (PDF 12845 kb)

Supplementary Software

NABLab Probe Designer manual and Matlab source code (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, J., Fang, J. et al. Continuously tunable nucleic acid hybridization probes. Nat Methods 12, 1191–1196 (2015). https://doi.org/10.1038/nmeth.3626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing