Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inferring transient particle transport dynamics in live cells

Abstract

Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Particle-trajectory analysis methods applied to neuronal mRNPs.
Figure 2: HMM-Bayes analysis of neuronal mRNPs.
Figure 3: HMM-Bayes analysis of oscillating metaphase kinetochores.

Similar content being viewed by others

References

  1. Saxton, M.J. & Jacobson, K. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  2. Chung, I. et al. Nature 464, 783–787 (2010).

    Article  CAS  Google Scholar 

  3. Jaqaman, K. et al. Cell 146, 593–606 (2011).

    Article  CAS  Google Scholar 

  4. Lionnet, T. et al. Nat. Methods 8, 165–170 (2011).

    Article  CAS  Google Scholar 

  5. Park, H.Y. et al. Science 343, 422–424 (2014).

    Article  CAS  Google Scholar 

  6. Vladimirou, E. et al. Dev. Cell 27, 60–71 (2013).

    Article  CAS  Google Scholar 

  7. Jaqaman, K. et al. Nat. Methods 5, 695–702 (2008).

    Article  CAS  Google Scholar 

  8. Chenouard, N. et al. Nat. Methods 11, 281–289 (2014).

    Article  CAS  Google Scholar 

  9. Saxton, M.J. Nat. Methods 11, 247–248 (2014).

    Article  CAS  Google Scholar 

  10. Monnier, N. et al. Biophys. J. 103, 616–626 (2012).

    Article  CAS  Google Scholar 

  11. Das, R., Cairo, C.W. & Coombs, D. PLoS Comput. Biol. 5, e1000556 (2009).

    Article  Google Scholar 

  12. Cairo, C.W. et al. J. Biol. Chem. 285, 11392–11401 (2010).

    Article  CAS  Google Scholar 

  13. Persson, F., Lindén, M., Unoson, C. & Elf, J. Nat. Methods 10, 265–269 (2013).

    Article  Google Scholar 

  14. Arcizet, D., Meier, B., Sackmann, E., Rädler, J.O. & Heinrich, D. Phys. Rev. Lett. 101, 248103 (2008).

    Article  Google Scholar 

  15. Katz, Z.B. et al. Genes Dev. 26, 1885–1890 (2012).

    Article  CAS  Google Scholar 

  16. Cheeseman, I.M. & Desai, A. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  17. Deforet, M. et al. Nat. Methods 9, 1081–1083 (2012).

    Article  CAS  Google Scholar 

  18. Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Nat. Methods 9, 755–763 (2012).

    Article  CAS  Google Scholar 

  19. Dray, N. et al. Curr. Biol. 23, 1335–1341 (2013).

    Article  CAS  Google Scholar 

  20. Saxton, M.J. Biophys. J. 64, 1766–1780 (1993).

    Article  CAS  Google Scholar 

  21. Ewens, W.J. & Grant, G.R. Statistical Methods in Bioinformatics (Springer, 2005).

  22. Robert, C.P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004).

  23. Grimmett, G. & Stirzaker, D. Probability and Random Processes 3rd edn. (Oxford University Press, 2001).

  24. Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. Markov Chain Monte Carlo in Practice (Chapman & Hall/CRC, 1996).

  25. Gelman, A., Gilks, W.R. & Roberts, G.O. Ann. Appl. Probab. 7, 110–120 (1997).

    Article  Google Scholar 

  26. He, J., Guo, S.M. & Bathe, M. Anal. Chem. 84, 3871–3879 (2012).

    Article  CAS  Google Scholar 

  27. Vallotton, P. & Olivier, S. Microsc. Microanal. 19, 451–460 (2013).

    Article  CAS  Google Scholar 

  28. Backer, C.B., Gutzman, J.H., Pearson, C.G. & Cheeseman, I.M. Mol. Biol. Cell 23, 2122–2130 (2012).

    Article  CAS  Google Scholar 

  29. Gascoigne, K.E. et al. Cell 145, 410–422 (2011).

    Article  CAS  Google Scholar 

  30. Meijering, E., Dzyubachyk, O. & Smal, I. Methods Enzymol. 504, 183–200 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by grants from the US National Institutes of Health (NIH) National Institute of Mental Health (U01 MH106011) and the US National Science Foundation Physics of Living Systems (PHY 1305537) to M.B., an NIH grant from the National Institute of Neurological Diseases and Stroke (NS083085-19) to R.H.S., a Scholar award from the Leukemia & Lymphoma Society and an NIH grant from the National Institute of General Medical Sciences (GM088313) to I.M.C., and a Schroedinger fellowship from the Austrian Science Fund to K.-C.S. We also thank M. Linden for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and M.B. conceived the method; N.M., A.D., K.P. and M.B. developed the theory; N.M. and Z.B. implemented the method; H.Y.P., Z.K., B.P.E. and R.H.S. collected mRNP data sets and advised on their analysis; K.-C.S. and I.M.C. collected kinetochore data sets and advised on their analysis; Z.B. and N.M. analyzed experimental data sets; N.M., Z.B. and M.B. wrote the paper.

Corresponding author

Correspondence to Mark Bathe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–27, Supplementary Table 1 and Supplementary Notes 1–7 (PDF 8120 kb)

Motion of neuronal mRNP #1 from Fig. 1

Raw fluorescence images of the mRNP from Fig. 1 in a live neuron. The left panel also shows the tracked particle positions (pink circles) and the resulting trajectory annotated with HMM-Bayes as in Fig. 1d. (AVI 1226 kb)

Motion of neuronal mRNP #2 from Fig. 2a

Raw fluorescence images of the mRNP from Fig. 2a in a live neuron. The left panel also shows the tracked particle positions (pink circles) and the resulting trajectory annotated with HMM-Bayes as in Fig. 2a. (AVI 4225 kb)

Motion of neuronal mRNP #3 from Fig. 2b

Raw fluorescence images of the mRNP from Fig. 2b in a live neuron. The left panel also shows the tracked particle positions (pink circles) and the resulting trajectory annotated with HMM-Bayes as in Fig. 2b. (AVI 5417 kb)

Supplementary Software

HMM-Bayes analysis package and associated documentation. (ZIP 10511 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monnier, N., Barry, Z., Park, H. et al. Inferring transient particle transport dynamics in live cells. Nat Methods 12, 838–840 (2015). https://doi.org/10.1038/nmeth.3483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing