Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic characterization of growth and gene expression using high-throughput automated flow cytometry

Abstract

Cells adjust to changes in environmental conditions using complex regulatory programs. These cellular programs are the result of an intricate interplay between gene expression, cellular growth and protein degradation. Technologies that enable simultaneous and time-resolved measurements of these variables are necessary to dissect cellular homeostatic strategies. Here we report the development of an automated flow cytometry robotic setup that enables real-time measurement of precise and simultaneous relative growth and protein synthesis rates of multiplexed microbial populations across many conditions. These measurements generate quantitative profiles of dynamically evolving protein synthesis and degradation rates. We demonstrate this setup in the context of gene regulation of the unfolded protein response (UPR) of Saccharomyces cerevisiae and uncover a dynamic and complex landscape of gene expression, growth dynamics and proteolysis following perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Automated high-throughput real-time flow cytometry.
Figure 2: Growth rate–corrected reporter protein dynamics by high-throughput flow cytometry.
Figure 3: Determination of two-dimensional dose responses and cell-to-cell variability by high-throughput flow cytometry.

Similar content being viewed by others

References

  1. Zhang, Q. & Andersen, M.E. Dose response relationship in anti-stress gene regulatory networks. PLOS Comput. Biol. 3, e24 (2007).

    PubMed  PubMed Central  Google Scholar 

  2. Muzzey, D. & van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 25, 301–327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Calvert, M.E.K., Lannigan, J.A. & Pemberton, L.F. Optimization of yeast cell cycle analysis and morphological characterization by multispectral imaging flow cytometry. Cytometry A 73, 825–833 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    CAS  PubMed  Google Scholar 

  7. Cookson, S., Ostroff, N., Pang, W.L., Volfson, D. & Hasty, J. Monitoring dynamics of single-cell gene expression over multiple cell cycles. Mol. Syst. Biol. 1, 2005.0024 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. Jacquet, M., Renault, G., Lallet, S., De Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497–505 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Newman, J.R.S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  10. Blomberg, A. Measuring growth rate in high-throughput growth phenotyping. Curr. Opin. Biotechnol. 22, 94–102 (2011).

    CAS  PubMed  Google Scholar 

  11. Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

    CAS  PubMed  Google Scholar 

  12. McKenna, B.K., Evans, J.G., Cheung, M.C. & Ehrlich, D.J. A parallel microfluidic flow cytometer for high-content screening. Nat. Methods 8, 401–403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chin, C.-S., Chubukov, V., Jolly, E.R., DeRisi, J. & Li, H. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol. 6, e146 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Levy, S. et al. Strategy of transcription regulation in the budding yeast. PLoS ONE 2, e250 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Schimke, R.T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–976 (1970).

    CAS  PubMed  Google Scholar 

  16. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E.K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leveau, J.H. & Lindow, S.E. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J. Bacteriol. 183, 6752–6762 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Subramanian, S. & Srienc, F. Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J. Biotechnol. 49, 137–151 (1996).

    CAS  PubMed  Google Scholar 

  19. Warner, J.B. & Lolkema, J.S. LacZ-promoter fusions: the effect of growth. Microbiology 148, 1241–1243 (2002).

    CAS  PubMed  Google Scholar 

  20. Kawahara, T., Yanagi, H., Yura, T. & Mori, K. Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8, 1845–1862 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40, 238–252 (2010).

    CAS  PubMed  Google Scholar 

  22. Haynes, C.M., Titus, E.A. & Cooper, A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 15, 767–776 (2004).

    CAS  PubMed  Google Scholar 

  23. Travers, K.J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  24. Steffen, K.K. et al. Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191, 107–118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Delic, M. et al. Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic. Biol. Med. 52, 2000–2012 (2012).

    CAS  PubMed  Google Scholar 

  26. Pollard, M.G., Travers, K.J. & Weissman, J.S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1, 171–182 (1998).

    CAS  PubMed  Google Scholar 

  27. Latimer, P. Light scattering vs. microscopy for measuring average cell size and shape. Biophys. J. 27, 117–126 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tzur, A., Moore, J.K., Jorgensen, P., Shapiro, H.M. & Kirschner, M.W. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS ONE 6, e16053 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullaney, P.F. & Dean, P.N. The small angle light scattering of biological cells. Biophys. J. 10, 764–772 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Münch, T., Sonnleitner, B. & Fiechter, A. The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization. J. Biotechnol. 22, 329–351 (1992).

    PubMed  Google Scholar 

  31. Delgado, M.L. et al. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology 147, 411–417 (2001).

    CAS  PubMed  Google Scholar 

  32. Pratt, J.M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002).

    CAS  PubMed  Google Scholar 

  33. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    CAS  PubMed  Google Scholar 

  34. Varshavsky, A. The early history of the ubiquitin field. Protein Sci. 15, 647–654 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez, A.D. et al. Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol. Biol. Cell 22, 528–540 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Varshavsky, A. Ubiquitin fusion technique and related methods. Methods Enzymol. 399, 777–799 (2005).

    CAS  PubMed  Google Scholar 

  37. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    CAS  PubMed  Google Scholar 

  38. Tobias, J.W. & Varshavsky, A. Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae. J. Biol. Chem. 266, 12021–12028 (1991).

    CAS  PubMed  Google Scholar 

  39. Baker, R.T., Tobias, J.W. & Varshavsky, A. Ubiquitin-specific proteases of Saccharomyces cerevisiae. J. Biol. Chem. 267, 23364–23375 (1992).

    CAS  PubMed  Google Scholar 

  40. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    CAS  PubMed  Google Scholar 

  41. Vembar, S.S. & Brodsky, J.L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, M., Gutierrez, G.J. & Ronai, Z.A. Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proc. Natl. Acad. Sci. USA 108, 9119–9124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanna, J., Meides, A., Zhang, D.P. & Finley, D. A ubiquitin stress response induces altered proteasome composition. Cell 129, 747–759 (2007).

    CAS  PubMed  Google Scholar 

  44. Onodera, J. & Ohsumi, Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582–31586 (2005).

    CAS  PubMed  Google Scholar 

  45. Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yewdell, J.W., Lacsina, J.R., Rechsteiner, M.C. & Nicchitta, C.V. Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol. Int. 35, 457–462 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Eden, E. et al. Proteome half-life dynamics in living human cells. Science 331, 764–768 (2011).

    CAS  PubMed  Google Scholar 

  48. Lévy, F., Johnsson, N., Rümenapf, T. & Varshavsky, A. Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl. Acad. Sci. USA 93, 4907–4912 (1996).

    PubMed  PubMed Central  Google Scholar 

  49. Anderson, J.C., Voigt, C.A. & Arkin, A.P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007).

    PubMed  PubMed Central  Google Scholar 

  50. Müller, D. & Stelling, J. Precise regulation of gene expression dynamics favors complex promoter architectures. PLOS Comput. Biol. 5, e1000279 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Aldridge, B.B., Gaudet, S., Lauffenburger, D.A. & Sorger, P.K. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis. Mol. Syst. Biol. 7, 553 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. Birtwistle, M.R. et al. Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Syst. Biol. 6, 109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bollenbach, T. & Kishony, R. Resolution of gene regulatory conflicts caused by combinations of antibiotics. Mol. Cell 42, 413–425 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Y., O'Malley, B.W. & Tsai, S.Y. A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. USA 91, 8180–8184 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stewart-Ornstein, J., Weissman, J.S. & El-Samad, H. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McIsaac, R.S. et al. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 4447–4459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neuert, G. et al. Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Munsky, B., Trinh, B. & Khammash, M. Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol. 5, 318 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Howlett, N.G. & Avery, S.V. Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiol. Lett. 176, 379–386 (1999).

    CAS  PubMed  Google Scholar 

  60. Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Knijnenburg, T.A. et al. A regression model approach to enable cell morphology correction in high-throughput flow cytometry. Mol. Syst. Biol. 7, 531 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. Brown, M.R. et al. Flow-based cytometric analysis of cell cycle via simulated cell populations. PLOS Comput. Biol. 6, e1000741 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. & Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273, 9912–9920 (1998).

    CAS  PubMed  Google Scholar 

  64. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Cox, J.S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    CAS  PubMed  Google Scholar 

  66. Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. DeRisi for useful conversations, engineering advice and access to equipment; J. Stewart-Ornstein (University of California, San Francisco (UCSF)) for the use of the estradiol-inducible system; and D. Pincus (UCSF) and the Walter lab for the HAC1i construct. V. Chubukov and C.-S. Chin provided early insight on reactor design and flow cytometry interfacing. This work was funded by the US National Institute of General Medical Sciences (NIGMS) system biology center (P50 GM081879), the David and Lucille Packard Foundation (H.E.-S. and H.L.) and US National Institutes of Health grants R01-GM070808 (H.L.).

Author information

Authors and Affiliations

Authors

Contributions

I.A.Z., H.E.-S. and H.L. conceived of the hardware setup. I.A.Z. designed, implemented and characterized the hardware setup, control software and mathematical framework. I.A.Z. and A.A.-D. designed and carried over the experiments. I.A.Z., A.A.-D., H.L. and H.E.-S. analyzed and interpreted the data. A.A.-D. cloned the strains necessary for the experiments. I.A.Z., A.A.-D., H.L. and H.E.-S. prepared the manuscript.

Corresponding authors

Correspondence to Hao Li or Hana El-Samad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–3 and Supplementary Note (PDF 1642 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuleta, I., Aranda-Díaz, A., Li, H. et al. Dynamic characterization of growth and gene expression using high-throughput automated flow cytometry. Nat Methods 11, 443–448 (2014). https://doi.org/10.1038/nmeth.2879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing