Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visualizing genomes: techniques and challenges

Abstract

As our ability to generate sequencing data continues to increase, data analysis is replacing data generation as the rate-limiting step in genomics studies. Here we provide a guide to genomic data visualization tools that facilitate analysis tasks by enabling researchers to explore, interpret and manipulate their data, and in some cases perform on-the-fly computations. We will discuss graphical methods designed for the analysis of de novo sequencing assemblies and read alignments, genome browsing, and comparative genomics, highlighting the strengths and limitations of these approaches and the challenges ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screenshots of connected views in Consed.
Figure 2: The UCSC Genome and Cancer Genomics Browsers.
Figure 3: The VISTA browser.

Similar content being viewed by others

References

  1. Pop, M. Genome assembly reborn: recent computational challenges. Brief. Bioinform. 10, 354–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Flicek, P. & Birney, E. Sense from sequence reads: methods for alignment and assembly. Nat. Methods 6 (suppl.), S6–S12 (2009).

    CAS  PubMed  Google Scholar 

  3. Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998). A widely used finishing tool that was the first to use error probabilities as an objective criterion to guide the finishing process.

    CAS  PubMed  Google Scholar 

  4. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  PubMed  Google Scholar 

  5. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    CAS  PubMed  Google Scholar 

  6. Schatz, M.C., Phillippy, A.M., Shneiderman, B. & Salzberg, S.L. Hawkeye: an interactive visual analytics tool for genome assemblies. Genome Biol. 8, R34 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. Salzberg, S.L., Church, D., DiCuccio, M., Yaschenko, E. & Ostell, J. The Genome Assembly Archive: a new public resource. PLoS Biol. 2, E285 (2004).

    PubMed  PubMed Central  Google Scholar 

  8. Li, H. et al. The Sequence Alignment/Map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Mardis, E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402 (2008).

    CAS  PubMed  Google Scholar 

  10. Turner, D.J., Keane, T.M., Sudbery, I. & Adams, D.J. Next-generation sequencing of vertebrate experimental organisms. Mamm. Genome 20, 327–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gordon, D., Desmarais, C. & Green, P. Automated finishing with autofinish. Genome Res. 11, 614–625 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dear, S. & Staden, R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19, 3907–3911 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonfield, J.K., Smith, K.F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995). One of the first and a widely used finishing tool with an interactive graphical user interface and sequence editing capabilities. An updated version (Gap5) is designed to handle NGS data.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Burland, T.G. DNASTAR's Lasergene sequence analysis software. Methods Mol. Biol. 132, 71–91 (2000).

    CAS  PubMed  Google Scholar 

  15. Parsons, J.D. Miropeats: graphical DNA sequence comparisons. Comput. Appl. Biosci. 11, 615–619 (1995).

    CAS  PubMed  Google Scholar 

  16. Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6 (suppl.), S13–S20 (2009).

    CAS  PubMed  Google Scholar 

  17. Huang, W. & Marth, G. EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res. 18, 1538–1543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bao, H. et al. MapView: visualization of short reads alignment on a desktop computer. Bioinformatics 25, 1554–1555 (2009).

    CAS  PubMed  Google Scholar 

  19. Manske, H. & Kwiatkowski, D. LookSeq: a browser-based viewer for deep sequencing data. Genome Res. 19, 2125–2132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, P.-G., Cho, H.-G. & Park, K. A scaffold analysis tool using mate-pair information in genome sequencing. J. Biomed. Biotechnol. 2008, 675741 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaisson, M.J. & Pevzner, P.A. Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez, D., François, P., Farinelli, L., Osterås, M. & Schrenzel, J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18, 802–809 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. MacCallum, I. et al. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol. 10, R103 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Nielsen, C.B., Jackman, S.D., Birol, I. & Jones, S.J. ABySS-Explorer: visualizing genome sequence assemblies. IEEE Trans. Vis. Comput. Graph. 15, 881–888 (2009).

    PubMed  Google Scholar 

  26. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  27. Eeckman, F.H. & Durbin, R. ACeDB and macace. Methods Cell Biol. 48, 583–605 (1995).

    CAS  PubMed  Google Scholar 

  28. Stein, L.D. et al. The generic genome browser: a building block for a model organism system database. Genome Res. 12, 1599–1610 (2002). The Generic Model Organism Database project is the most widely used framework for developing software tools to support genome analysis and curation. Three synteny-specific tools have been developed within the GMOD framework: SynBrowse, SynView and GBrowseSyn.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  30. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). Widely used genome browser with user-friendly web interface and capability to display third party data.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Birney, E., Bateman, A., Clamp, M.E. & Hubbard, T.J. Mining the draft human genome. Nature 409, 827–828 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stalker, J. et al. The Ensembl web site: mechanics of a genome browser. Genome Res. 14, 951–955 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wheeler, D.L. et al. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 31, 28–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cline, M.S. & Kent, W.J. Understanding genome browsing. Nat. Biotechnol. 27, 153–155 (2009).

    CAS  PubMed  Google Scholar 

  35. Furey, T.S. Comparison of human (and other) genome browsers. Hum. Genomics 2, 266–270 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. ENCODE Project Consortium. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  38. Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  39. Skinner, M.E., Uzilov, A.V., Stein, L.D., Mungall, C.J. & Holmes, I.H. JBrowse: a next-generation genome browser. Genome Res. 19, 1630–1638 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis . Cell 133, 523–536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yates, T., Okoniewski, M.J. & Miller, C.J. X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis. Nucleic Acids Res. 36 Database issue, D780–D786 (2008).

    CAS  PubMed  Google Scholar 

  42. Arakawa, K. et al. Genome Projector: zoomable genome map with multiple views. BMC Bioinformatics 10, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Zhu, J. et al. The UCSC Cancer Genomics Browser. Nat. Methods 6, 239–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Anders, S. Visualization of genomic data with the Hilbert curve. Bioinformatics 25, 1231–1235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Homer, N. et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 4, e1000167 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. Ureta-Vidal, A., Ettwiller, L. & Birney, E. Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat. Rev. Genet. 4, 251–262 (2003).

    CAS  PubMed  Google Scholar 

  47. Freeling, M. & Subramaniam, S. Conserved noncoding sequences (CNSs) in higher plants. Curr. Opin. Plant Biol. 12, 126–132 (2009).

    CAS  PubMed  Google Scholar 

  48. Drosophila 12 Genomes Consortium. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

  49. Richter, D.C., Schuster, S.C. & Huson, D.H. OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics 23, 1573–1579 (2007).

    CAS  PubMed  Google Scholar 

  50. Schwartz, S. et al. Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brudno, M. et al. Glocal alignment: finding rearrangements during alignment. Bioinformatics 19 (suppl. 1), i54–i62 (2003).

    PubMed  Google Scholar 

  53. Dewey, C.N. Aligning multiple whole genomes with Mercator and MAVID. Methods Mol. Biol. 395, 221–236 (2007).

    CAS  PubMed  Google Scholar 

  54. Darling, A.C.E., Mau, B., Blattner, F.R. & Perna, N.T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dubchak, I., Poliakov, A., Kislyuk, A. & Brudno, M. Multiple whole-genome alignments without a reference organism. Genome Res. 19, 682–689 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32 (Web Server issue), W273–W279 (2004). A comprehensive suite of programs and databases for comparative analysis of genomic sequences. Whole-genome alignments of many species from different taxa (vertebrates to prokaryotes) and tools for custom analysis of user-submitted sequences are provided.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Karolchik, D. et al. Comparative genomic analysis using the UCSC genome browser. Methods Mol. Biol. 395, 17–34 (2007).

    CAS  PubMed  Google Scholar 

  59. Prabhakar, S. et al. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res. 16, 855–863 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregory, S.G. et al. A physical map of the mouse genome. Nature 418, 743–750 (2002).

    CAS  PubMed  Google Scholar 

  61. Haas, B.J., Delcher, A.L., Wortman, J.R. & Salzberg, S.L. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20, 3643–3646 (2004).

    CAS  PubMed  Google Scholar 

  62. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed  PubMed Central  Google Scholar 

  63. Ohtsubo, Y., Ikeda-Ohtsubo, W., Nagata, Y. & Tsuda, M. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics 9, 376 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Mouse Genome Sequencing Consortium. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  65. Galagan, J.E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae . Nature 438, 1105–1115 (2005).

    CAS  PubMed  Google Scholar 

  66. Putnam, N.H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    CAS  PubMed  Google Scholar 

  67. Sinha, A.U. & Meller, J. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinformatics 8, 82 (2007). A flexible web-based tool allowing investigators to view synteny at the level of whole genomes, individual pairs of chromosomes, or regions around markers of interest, which can be uploaded by the user.

    PubMed  PubMed Central  Google Scholar 

  68. Lewis, S.E. et al. Apollo: a sequence annotation editor. Genome Biol. 3, RESEARCH0082 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dehal, P.S. & Boore, J.L. A phylogenomic gene cluster resource: the Phylogenetically Inferred Groups (PhIGs) database. BMC Bioinformatics 7, 201 (2006).

    PubMed  PubMed Central  Google Scholar 

  70. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Meyer, M., Munzner, T. & Pfister, H. MizBee: a multiscale synteny browser. IEEE Trans. Vis. Comput. Graph. 15, 897–904 (2009).

    PubMed  Google Scholar 

  72. Miller, W. et al. 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. 17, 1797–1808 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dubchak, I. Comparative analysis and visualization of genomic sequences using VISTA browser and associated computational tools. Methods Mol. Biol. 395, 3–16 (2007).

    CAS  PubMed  Google Scholar 

  74. Kent, W.J. et al. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 100, 11484–11489 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Brendel, V., Kurtz, S. & Pan, X. Visualization of syntenic relationships with SynBrowse. Methods Mol. Biol. 396, 153–163 (2007).

    CAS  PubMed  Google Scholar 

  76. Carver, T. et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Engels, R. et al. Combo: a whole genome comparative browser. Bioinformatics 22, 1782–1783 (2006).

    CAS  PubMed  Google Scholar 

  78. Crabtree, J., Angiuoli, S.V., Wortman, J.R. & White, O.R. Sybil: methods and software for multiple genome comparison and visualization. Methods Mol. Biol. 408, 93–108 (2007).

    CAS  PubMed  Google Scholar 

  79. Wang, H., Su, Y., Mackey, A.J., Kraemer, E.T. & Kissinger, J.C. SynView: a GBrowse-compatible approach to visualizing comparative genome data. Bioinformatics 22, 2308–2309 (2006).

    CAS  PubMed  Google Scholar 

  80. Shah, N. et al. Phylo-VISTA: interactive visualization of multiple DNA sequence alignments. Bioinformatics 20, 636–643 (2004).

    CAS  PubMed  Google Scholar 

  81. Göttgens, B. et al. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res. 11, 87–97 (2001).

    PubMed  PubMed Central  Google Scholar 

  82. Stothard, P. & Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539 (2005).

    CAS  PubMed  Google Scholar 

  83. Shannon, P.T., Reiss, D.J., Bonneau, R. & Baliga, N.S. The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 7, 176 (2006).

    PubMed  PubMed Central  Google Scholar 

  84. Nicol, J.W., Helt, G.A., Blanchard, S.G. Jr., Raja, A. & Loraine, A.E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale data sets. Bioinformatics 25, 2730–2731 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148, 1772–1781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Elnitski, L., Riemer, C., Burhans, R., Hardison, R. & Miller, W. MultiPipMaker: comparative alignment server for multiple DNA sequences. Curr. Protoc. Bioinformatics Ch. 10, unit 10.14 (2005).

  87. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047 (2000).

    CAS  PubMed  Google Scholar 

  88. Youens-Clark, K., Faga, B., Yap, I.V., Stein, L. & Ware, D. CMap 1.01: a comparative mapping application for the Internet. Bioinformatics 25, 3040–3042 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Y. Butterfield, S. Diguistini, P. Gorniak, M. Krzywinski, N. Liao, G. Robertson and G. Taylor for helpful discussions and comments. C.B.N. was funded with US federal funds from the National Cancer Institute, National Institutes of Health (NIH), under contract no. NO1-CO-12400. The contributions of M.C. and I.D. were performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231, and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. D.G. was supported by NIH grants R01 HL094976 and 1RC2HL10296-01 and by the Howard Hughes Medical Institute. T.W. was supported by funds from the Helen Hay Whitney Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cydney B Nielsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, C., Cantor, M., Dubchak, I. et al. Visualizing genomes: techniques and challenges. Nat Methods 7 (Suppl 3), S5–S15 (2010). https://doi.org/10.1038/nmeth.1422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1422

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research