Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genetically encoded calcium indicator for chronic in vivo two-photon imaging

Abstract

Neurons in the nervous system can change their functional properties over time. At present, there are no techniques that allow reliable monitoring of changes within identified neurons over repeated experimental sessions. We increased the signal strength of troponin C–based calcium biosensors in the low-calcium regime by mutagenesis and domain rearrangement within the troponin C calcium binding moiety to generate the indicator TN-XXL. Using in vivo two-photon ratiometric imaging, we show that TN-XXL exhibits enhanced fluorescence changes in neurons of flies and mice. TN-XXL could be used to obtain tuning curves of orientation-selective neurons in mouse visual cortex measured repeatedly over days and weeks. Thus, the genetically encoded calcium indicator TN-XXL allows repeated imaging of response properties from individual, identified neurons in vivo, which will be crucial for gaining new insights into cellular mechanisms of plasticity, regeneration and disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and in vitro characterization of TN-XXL.
Figure 2: In vivo two-photon imaging and calibration of TN-XXL in Drosophila motor neuron boutons.
Figure 3: Imaging stimulus-evoked TN-XXL signals in mouse visual cortex.
Figure 4: Comparison of responses to drifting grating stimuli in neurons expressing TN-XXL and OGB-1 AM.
Figure 5: Repeated imaging of sensory-evoked calcium signals using TN-XXL.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kerr, J.N.D. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205 (2008).

    Article  CAS  Google Scholar 

  2. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  3. Kerr, J.N.D., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    Article  CAS  Google Scholar 

  4. Ohki, K., Chung, S., Ch'Ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  Google Scholar 

  5. Ohki, K. et al. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442, 925–928 (2006).

    Article  CAS  Google Scholar 

  6. Mrsic-Flogel, T.D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).

    Article  CAS  Google Scholar 

  7. Feldman, D.E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005).

    Article  CAS  Google Scholar 

  8. Hooks, B.M. & Chen, C.F. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56, 312–326 (2007).

    Article  CAS  Google Scholar 

  9. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  Google Scholar 

  10. Jackson, A. & Fetz, E.E. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J. Neurophysiol. 98, 3109–3118 (2007).

    Article  Google Scholar 

  11. Miyawaki, A. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189–199 (2005).

    Article  CAS  Google Scholar 

  12. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  Google Scholar 

  13. Pologruto, T.A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004).

    Article  CAS  Google Scholar 

  14. Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    Article  CAS  Google Scholar 

  15. Mao, T., O'Connor, D.H., Scheuss, V., Nakai, J. & Svoboda, K. Characterization and subcellular targeting of GCaMP-type genetically encoded calcium indicators. PLoS ONE 3, e1796 (2008).

    Article  Google Scholar 

  16. Heim, N. & Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 279, 14280–14286 (2004).

    Article  CAS  Google Scholar 

  17. Mank, M. et al. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys. J. 90, 1790–1796 (2006).

    Article  CAS  Google Scholar 

  18. Heim, N. et al. Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat. Methods 4, 127–129 (2007).

    Article  CAS  Google Scholar 

  19. Potter, J.D. & Gergely, J. Calcium and magnesium binding-sites on troponin and their role in regulation of myofibrillar adenosine-triphosphatase. J. Biol. Chem. 250, 4628–4633 (1975).

    CAS  PubMed  Google Scholar 

  20. Filatov, V.L., Katrukha, A.G., Bulargina, T.V. & Gusev, N.B. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc.) 64, 969–985 (1999).

    CAS  Google Scholar 

  21. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  Google Scholar 

  22. Trigo-Gonzalez, G., Awang, G., Racher, K., Neden, K. & Borgford, T. Helix variants of troponin-C with tailored calcium affinities. Biochemistry 32, 9826–9831 (1993).

    Article  CAS  Google Scholar 

  23. Hendel, T. et al. Fluorescence change of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  Google Scholar 

  24. Dräger, U.C. Receptive-fields of single cells and topography in mouse visual-cortex. J. Comp. Neurol. 160, 269–289 (1975).

    Article  Google Scholar 

  25. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  26. Mandl, G., Desai, N. & Capaday, C. Nitrous-oxide modifies visual responses in the cat retina, striate cortex and superior colliculus. Brain Res. 193, 401–414 (1980).

    Article  CAS  Google Scholar 

  27. Emondi, A.A., Rebrik, S.P., Kurgansky, A.V. & Miller, K.D. Tracking neurons recorded from tetrodes across time. J. Neurosci. Methods 135, 95–105 (2004).

    Article  CAS  Google Scholar 

  28. Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    Article  CAS  Google Scholar 

  29. Zipfel, W.R., Williams, R.M. & Webb, W.W. Non-linear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  30. Swindale, N.V., Grinvald, A . & Shmuel, A. The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb. Cortex. 13, 225–238 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Moritz for technical assistance. This work was supported by the Max Planck Society, DFG priority program grant SP1172 to O.G., the Wellcome Trust (S.B.H., T.D.M.-F.) and a 'Bsik' grant from SenterNovem (The Netherlands) to C.L.

Author information

Authors and Affiliations

Authors

Contributions

M.M. performed all molecular biology and spectroscopy to engineer TN-XXL; S.D. and V.S. performed electrophysiology in hippocampal slices; T.H., D.F.R. and A.B. imaged and evaluated TN-XXL in Drosophila; C.L. performed in utero electroporation; A.F.S., S.B.H., T.D.M.-F., T.B. and M.H. performed and evaluated experiments in mouse visual cortex; O.G., M.H., D.F.R., M.M. and A.F.S. wrote the manuscript; all authors contributed to editing the manuscript.

Corresponding author

Correspondence to Oliver Griesbeck.

Ethics declarations

Competing interests

M.M. and O.G. are listed as inventors in an international PCT patent application assigned to the Max Planck Society, which includes as claims the calcium biosensor described in this manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mank, M., Santos, A., Direnberger, S. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5, 805–811 (2008). https://doi.org/10.1038/nmeth.1243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing