Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The giant electrorheological effect in suspensions of nanoparticles

Abstract

Electrorheology (ER) denotes the control of a material's flow properties (rheology) through an electric field1,2,3,4,5,6,7,8,9,10. We have fabricated electrorheological suspensions of coated nanoparticles that show electrically controllable liquid–solid transitions. The solid state can reach a yield strength of 130 kPa, breaking the theoretical upper bound on conventional ER static yield stress that is derived on the general assumption that the dielectric and conductive responses of the component materials are linear. In this giant electrorheological (GER) effect, the static yield stress displays near-linear dependence on the electric field, in contrast to the quadratic variation usually observed11,12,13,14,15,16. Our GER suspensions show low current density over a wide temperature range of 10–120 °C, with a reversible response time of <10 ms. Finite-element simulations, based on the model of saturation surface polarization in the contact regions of neighbouring particles, yield predictions in excellent agreement with experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of nanoparticles in GER suspensions.
Figure 2: Static yield stress plotted as a function of applied electric field for two solid concentrations.
Figure 3: Ilustration of the theoretical model with calculated results.

Similar content being viewed by others

References

  1. Whittle, M. & Bullough, W.A. The structure of smart fluids. Nature 358, 373–373 (1992).

    Article  Google Scholar 

  2. Halsey, T.C. Electrorheological fluids. Science 258, 761–766 (1992).

    Article  CAS  Google Scholar 

  3. Clercx, H. & Bossis, G. Many-body electrostatic interaction in electrorheological fluids. Phys. Rev. E 48, 2721–2738 (1993).

    Article  CAS  Google Scholar 

  4. Tao, R. & Sun, J.M. Three-dimensional structure of induced electrorheological solid. Phys. Rev. Lett. 67, 398–401 (1991).

    Article  CAS  Google Scholar 

  5. Gamota, D.R. & Filisko, F.E. Linear and nonlinear mechanical-properties of electrorheological materials. Int. J. Mod. Phys B 6, 2595–2607 (1992).

    Article  CAS  Google Scholar 

  6. Chen, Y., Sprecher, A.F. & Conrad, H. Electrostatic particle–particle interaction in electrorheological fluids. J. Appl. Phys. 70, 6796–6803 (1991).

    Article  CAS  Google Scholar 

  7. Davis, L.C. Ground-state of an electrorheological fluid. Phys. Rev. A 46, R719–R721 (1992).

    Article  CAS  Google Scholar 

  8. Martin, J.E., Odinek, J., Halsey, T.C. & Kamien, R. Structure and dynamics of electrorheological fluids. Phys. Rev. E 57, 756–775 (1998).

    Article  CAS  Google Scholar 

  9. Anderson, R.A. in Electrorheological Fluids (ed. Tao, R.) 81–90 (World Scientific, Singapore, 1992).

    Google Scholar 

  10. Davis, L.C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys. 74, 1334–1340 (1992).

    Article  Google Scholar 

  11. Garino, T., Adolf, D. & Hance, B. in Electrorheological Fluids (ed. Tao, R.) 167–174 (World Scientific, Singapore, 1992).

    Google Scholar 

  12. Randall, C.A., McCauley, D.E., Bowen, C.P., Shrout, T.R. & Messing, G.L. in Electrorheological Fluids (eds Tao, R. & Roy, G.D.) 60–66 (World Scientific, Singapore, 1994).

    Google Scholar 

  13. Liang, R. & Xu, Y. in Electrorheological Fluids (eds Tao, R. & Roy, G.D.) 233–250 (World Scientific, Singapore, 1994).

    Google Scholar 

  14. Randall, C.A., Bowen, C.P., Shrout, T.R., Messing, G.L. & Newnham, R.E. in Electrorheological Fluids (eds Tao, R. & Roy, G.D.) 516–525 (World Scientific, Singapore, 1994).

    Google Scholar 

  15. Ma, H.R., Wen, W., Tam, W.Y. & Sheng, P. Frequency dependent electrorheological properties: origin and bounds. Phys. Rev. Lett. 77, 2499–2502 (1996).

    Article  CAS  Google Scholar 

  16. Tam, W.Y. et al. New electrorheological fluid: theory and experiment. Phys. Rev. Lett. 78, 2987–2990 (1997).

    Article  CAS  Google Scholar 

  17. Handbook of Chemistry and Physics 62nd edn (eds Weast, R.C. & Astle, M.J.) (CRC, Boca Raton, 1981–1982).

  18. Ma, H., Wen, W., Tam, W.Y. & Sheng, P. Dielectric electrorheological fluids: theory and experiment. Adv. Phys. 52, 343–383 (2003).

    Article  CAS  Google Scholar 

  19. Atten, P., Foulc, J.-N. & Felici, N. A conduction model of the electrorheological effect. Int. J. Mod. Phys. B 8, 2731–2745 (1994).

    Article  CAS  Google Scholar 

  20. Davis, L.C. & Ginder, J.M. in Progress in Electrorheology (eds Havelka, K.O. & Filisko, F.E.) 107–114 (Plenum, New York, 1995).

    Book  Google Scholar 

  21. Landau, L.D. & Lifshitz, E.M. Theory of Elasticity 3rd edn (Pergamon, Oxford, 1986).

    Google Scholar 

  22. Neugebauer, C.A. & Webb, M.B. Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33, 74–82 (1962).

    Article  CAS  Google Scholar 

  23. Hill, R.M. Electrical conduction in ultra thin metal films. I. Theoretical. Proc. R. Soc. Lond. A 309, 377–395 (1969).

    Article  CAS  Google Scholar 

  24. Proc. 8th Int. Conf. Electrorheological Fluids and Magnetorheological Suspensions (ed. Bossis, G.) (World Scientific, Singapore, 2002).

  25. Clark, I.J., Takeuchi, T., Ohtori, N. & Sinclair, D.C. Hydrothermal synthesis and characterization of BaTiO3 fine powders: precursors, polymorphism and properties. J. Mater. Chem. 9, 83–91 (1999).

    Article  CAS  Google Scholar 

  26. Xu, H. & Gao, L. New evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. Mater. Lett. 57, 490–494 (2002).

    Article  CAS  Google Scholar 

  27. Wen, W., Zheng, D. & Tu, K. Experimental investigation for the time-dependent effect in electrorheological fluids under time-regulated high pulse electric field. Rev. Sci. Instrum. 69, 3573–3576 (1998).

    Article  CAS  Google Scholar 

  28. Jackson, J.D. Classical Electrodynamics 2nd edn (Wiley, New York, 1975).

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by CERG HKUST6065/02P and NSFC No.10029401. We thank Y. Zheng for help in TEM pictures. W.W. and P.S. also thank C. T. Chan and W. K. Ge for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, W., Huang, X., Yang, S. et al. The giant electrorheological effect in suspensions of nanoparticles. Nature Mater 2, 727–730 (2003). https://doi.org/10.1038/nmat993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing