Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy

Abstract

π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 103 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to 1010 and sub-zeptomole (<10−21 mole) analyte detection were accomplished by coating the DFH-4T films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of nanostructured DFH-4T films.
Figure 2: SERS response of nanostructured DFH-4T-based films.
Figure 3: Characterization and SERS response of 2D DH-4T films.
Figure 4: Quantum mechanical computations.
Figure 5: Characterization, SERS response and molecular detection of Au@DFH-4T films.

Similar content being viewed by others

References

  1. Hudson, S. D. & Chumanov, G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem. 394, 679–686 (2009).

    Article  CAS  Google Scholar 

  2. Pearman, W. F. & Fountain, A. W. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Appl. Spectrosc. 60, 356–365 (2006).

    Article  CAS  Google Scholar 

  3. Halvorson, R. A. & Vikesland, P. J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010).

    Article  CAS  Google Scholar 

  4. Wang, L. et al. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett. 9, 4147–4152 (2009).

    Article  CAS  Google Scholar 

  5. Huang, N., Lü, T., Zhang, R. & Cao, W. High sensitivity gravimetric sensor made of carbon fiber epoxy composite on Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystal substrate. Appl. Phys. Lett. 103, 053507 (2013).

    Article  CAS  Google Scholar 

  6. Guo, X., Ying, Y. & Tong, L. Photonic nanowires: From subwavelength waveguides to optical sensors. Acc. Chem. Res. 47, 656–666 (2013).

    Article  CAS  Google Scholar 

  7. Chen, A. & Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013).

    Article  CAS  Google Scholar 

  8. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Article  CAS  Google Scholar 

  9. Lombardi, J. R. & Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009).

    Article  CAS  Google Scholar 

  10. Alessandri, I. Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators. J. Am. Chem. Soc. 135, 5541–5544 (2013).

    Article  CAS  Google Scholar 

  11. Wang, Y. et al. Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J. Raman Spectrosc. 40, 1072–1077 (2009).

    Article  CAS  Google Scholar 

  12. Li, W. et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 135, 7098–7101 (2013).

    Article  CAS  Google Scholar 

  13. Quagliano, L. G. Observation of molecules adsorbed on III–V semiconductor quantum dots by surface-enhanced Raman scattering. J. Am. Chem. Soc. 126, 7393–7398 (2004).

    Article  CAS  Google Scholar 

  14. Chen, L. Y., Yu, J. S., Fujita, T. & Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221–1226 (2009).

    Article  CAS  Google Scholar 

  15. Facchetti, A. π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2010).

    Article  CAS  Google Scholar 

  16. Labastide, J. et al. Directional charge separation in isolated organic semiconductor crystalline nanowires. Nat. Commun. 7, 10629 (2016).

    Article  CAS  Google Scholar 

  17. Zhang, L. et al. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Acc. Chem. Res. 48, 500–509 (2015).

    Article  CAS  Google Scholar 

  18. Zang, L., Che, Y. & Moore, J. S. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41, 1596–1608 (2008).

    Article  CAS  Google Scholar 

  19. Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    Article  CAS  Google Scholar 

  20. Usta, H., Facchetti, A. & Marks, T. J. n-Channel semiconductor materials design for organic complementary circuits. Acc. Chem. Res. 44, 501–510 (2011).

    Article  CAS  Google Scholar 

  21. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  Google Scholar 

  22. Roberts, M. E. et al. Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl Acad. Sci. USA 105, 12134–12139 (2008).

    Article  Google Scholar 

  23. Kuribara, K. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 3, 723 (2012).

    Article  CAS  Google Scholar 

  24. Yilmaz, M. et al. Micro-/nanostructured highly crystalline organic semiconductor films for surface-enhanced Raman spectroscopy applications. Adv. Funct. Mater. 25, 5669–5676 (2015).

    Article  CAS  Google Scholar 

  25. Yilmaz, M. et al. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014).

    Article  CAS  Google Scholar 

  26. Demirel, G., Malvadkar, N. & Demirel, M. C. Template-based and template-free preparation of nanostructured parylene via oblique angle polymerization. Thin Solid Films 518, 4252–4255 (2010).

    Article  CAS  Google Scholar 

  27. Facchetti, A. et al. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nTs; n = 2–6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. J. Am. Chem. Soc. 126, 13480–13501 (2004).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics. Nano Lett. 14, 5547–5554 (2014).

    Article  CAS  Google Scholar 

  29. Akin, M. S. et al. Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. J. Mater. Chem. B 2, 4894–4900 (2014).

    Article  CAS  Google Scholar 

  30. Xu, W. et al. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl Acad. Sci. USA 109, 9281–9286 (2012).

    Article  Google Scholar 

  31. Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E. & Van Duyne, R. P. SERS: materials, applications, and the future. Mater. Today 15, 16–25 (January, 2012).

    Article  CAS  Google Scholar 

  32. Dinelli, F. et al. High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416–1420 (2006).

    Article  CAS  Google Scholar 

  33. Gieseking, R. L., Ratner, M. A. & Schatz, G. C. Theoretical modeling of voltage effects and the chemical mechanism in surface-enhanced Raman scattering. Faraday Discuss. http://dx.doi.org/10.1039/C7FD00122C (2017).

  34. Jensen, L., Zhao, L. L., Autschbach, J. & Schatz, G. C. Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. J. Chem. Phys. 123, 174110 (2005).

    Article  CAS  Google Scholar 

  35. Jensen, L., Autschbach, J. & Schatz, G. C. Finite lifetime effects on the polarizability within time-dependent density-functional theory. J. Chem. Phys. 122, 224115 (2005).

    Article  CAS  Google Scholar 

  36. Tokura, Y. & Koda, T. Experimental determination of the charge-transfer exciton band width in anthracene-PMDA crystal. Solid State Commun. 40, 299–301 (1981).

    Article  CAS  Google Scholar 

  37. Facchetti, A. et al. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nT; n = 2–6). Part 2. Thin film microstructure, semiconductor performance, and modeling to charge injection in field-effect transistors. J. Am. Chem. Soc. 126, 13859–13874 (2004).

    Article  CAS  Google Scholar 

  38. Zou, S. & Schatz, G. C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Phys. Lett. 403, 62–67 (2005).

    Article  CAS  Google Scholar 

  39. Fan, M. & Brolo, A. G. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).

    Article  CAS  Google Scholar 

  40. Pandey, P. A. et al. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small 7, 3202–3210 (2011).

    Article  CAS  Google Scholar 

  41. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  CAS  Google Scholar 

  42. Wei, W., Chen, K. & Ge, G. Strongly coupled nanorod vertical arrays for plasmonic sensing. Adv. Mater. 25, 3863–3868 (2013).

    Article  CAS  Google Scholar 

  43. Doherty, M. D., Murphy, A., McPhillips, J., Pollard, R. J. & Dawson, P. Wavelength dependence of Raman enhancement of gold nanorod arrays: quantitative experiment and modelling of a hot spot dominated system. J. Phys. Chem. C 114, 19913–19919 (2010).

    Article  CAS  Google Scholar 

  44. Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F. & Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008).

    Article  CAS  Google Scholar 

  45. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  CAS  Google Scholar 

  46. Wang, X., Shi, W., She, G. & Mu, L. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J. Am. Chem. Soc. 133, 16518–16523 (2011).

    Article  CAS  Google Scholar 

  47. Lombardi, J. R. & Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 118, 11120–11130 (2014).

    Article  CAS  Google Scholar 

  48. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  49. Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 84106 (2008).

    Article  CAS  Google Scholar 

  50. Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  CAS  Google Scholar 

  51. Körzdörfer, T., Parrish, R. M., Sears, J. S., Sherrill, C. D. & Brédas, J. L. On the relationship between bond-length alternation and many-electron self-interaction error. J. Chem. Phys. 137, 124305 (2012).

    Article  CAS  Google Scholar 

  52. Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article  CAS  Google Scholar 

  53. Johnson, R. D. III NIST computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101 (2013); http://cccbdb.nist.gov

  54. Ridley, J. & Zerner, M. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theor. Chim. Acta 32, 111–134 (1973).

    Article  CAS  Google Scholar 

  55. Fox, T., Kotzian, M. & Rosch, N. Design of rigid donor–acceptor systems with a low-lying charge-transfer state. An INDO model study of barrelene-based compounds. J. Phys. Chem. 97, 11420–11426 (1993).

    Article  CAS  Google Scholar 

  56. Nazeeruddin, M. K. et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorg. Chem. 45, 787–797 (2006).

    Article  CAS  Google Scholar 

  57. Stewart, J. J. P. MOPAC: a semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 4, 1–105 (1990).

    Article  Google Scholar 

  58. Shapley, W. A., Reimers, J. R. & Hush, N. S. INDO/S parameters for gold. Int. J. Quantum Chem. 90, 424–438 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Gazi University (grant no. 05/2015-19) and Polyera Corporation. G.D., H.U. and Y.D. acknowledge support from the Turkish Academy of Sciences, Distinguished Young Scientist Award (TUBA-GEBIP). A.F. thanks the Shenzhen Peacock Plan project (KQTD20140630110339343) and the BSF (AGMT-2012250///02).

Author information

Authors and Affiliations

Authors

Contributions

G.D., H.U. and A.F. conceived and designed the experiments. H.U., M.Ö. and A.F. synthesized the small molecular organic semiconductors. G.D., M.Y., U.T. and E.B. fabricated the nanostructured platforms and performed the experiments. G.C.S. and R.L.G. designed and performed the theoretical calculations. Y.D. helped with the density functional theory calculations. All authors discussed the results and co-wrote the paper.

Corresponding authors

Correspondence to George C. Schatz, Antonio Facchetti, Hakan Usta or Gokhan Demirel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M., Babur, E., Ozdemir, M. et al. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Mater 16, 918–924 (2017). https://doi.org/10.1038/nmat4957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing