Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing crystalline domains in a mollusc shell single-crystalline prism

Abstract

Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the ‘single-crystalline’ prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Pinctada margaritifera shell at different length scales.
Figure 2: 3D Bragg diffraction ptychography set-up.
Figure 3: 3D Bragg ptychography reconstruction.
Figure 4: Crystalline coherence in the iso-oriented domain.

Similar content being viewed by others

References

  1. Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702 (1997).

    CAS  Google Scholar 

  2. Boggild, O. M. The shell structure of molluscs. Kgl Dan. Vidensk Selsk Skr. Natruvidensk Og Mathem 2, 231–236 (1930).

    Google Scholar 

  3. Grégoire, C. in Mollusca Vol. VII (eds Florkin, M. & Scheer, B. T.) 45–145 (Academic, 1972).

    Google Scholar 

  4. Taylor, J. D. & Kennedy, W. J. The shell structure and mineralogy of the Bivalvia: introduction, Nuculacea trigonacea. Bull. Br. Mus. Nat. Hist. 3, 1–125 (1969).

    Google Scholar 

  5. Cuif, J.-P. et al. Evidence of a biological control over origin, growth and end of the calcite prisms in the shells of Pinctada margaritifera (Pelecypod, Pterioidea). Minerals 4, 815–834 (2014).

    Google Scholar 

  6. Farre, B. et al. Shell layers of the black-lip pearl oyster Pinctada margaritifera: matching microstructure and composition. Comp. Biochem. Physiol. B 159, 131–139 (2011).

    Google Scholar 

  7. Dauphin, Y. et al. Structure and composition of the nacre–prisms transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal. Bioanal. Chem. 390, 1659–1669 (2008).

    CAS  Google Scholar 

  8. Dauphin, Y. The nanostructural unity of Mollusc shells. Mineral. Mag. 72, 243–246 (2008).

    CAS  Google Scholar 

  9. Sethmann, I., Hinrichs, R., Wörheide, G. & Putnis, A. Nano-cluster composite structure of calcitic sponge spicules—a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100, 88–96 (2006).

    CAS  Google Scholar 

  10. Baronnet, A., Cuif, J. P., Dauphin, Y., Farre, B. & Nouet, J. Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges. Mineral. Mag. 72, 617–626 (2008).

    CAS  Google Scholar 

  11. Dauphin, Y. Soluble organic matrices of the calcitic prismatic shell layers of two Pteriomorphid Bivalves Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 278, 15168–15177 (2003).

    CAS  Google Scholar 

  12. Jacob, D. E. et al. Nanostructure, composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta 72, 5401–5415 (2008).

    CAS  Google Scholar 

  13. Cölfen, H. & Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).

    Google Scholar 

  14. Berman, A. et al. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259, 776–779 (1993).

    CAS  Google Scholar 

  15. Gilow, C., Zolotoyabko, E., Paris, O., Fratzl, P. & Aichmayer, B. Nanostructure of biogenic calcite crystals: a view by small-angle X-ray scattering. Cryst. Growth Des. 11, 2054–2058 (2011).

    CAS  Google Scholar 

  16. Pokroy, B. et al. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. J. Struct. Biol. 155, 96–103 (2006).

    CAS  Google Scholar 

  17. Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: a view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).

    CAS  Google Scholar 

  18. Okumura, T., Suzuki, M., Nagasawa, H. & Kogure, T. Microstructural variation of biogenic calcite with intracrystalline organic macromolecules. Cryst. Growth Des. 12, 224–230 (2012).

    CAS  Google Scholar 

  19. Okumura, T., Suzuki, M., Nagasawa, H. & Kogure, T. Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. Micron 41, 821–826 (2010).

    CAS  Google Scholar 

  20. Gilbert, P. U. P. A., Young, A. & Coppersmith, S. N. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy. Proc. Natl Acad. Sci. USA 108, 11350–11355 (2011).

    CAS  Google Scholar 

  21. Olson, I. C. et al. Crystal lattice tilting in prismatic calcite. J. Struct. Biol. 183, 180–190 (2013).

    CAS  Google Scholar 

  22. Berman, A. et al. Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. Science 250, 664–667 (1990).

    CAS  Google Scholar 

  23. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843 (1952).

    Google Scholar 

  24. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    CAS  Google Scholar 

  25. Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348, 530–535 (2015).

    CAS  Google Scholar 

  26. Ayyer, K. et al. Macromolecular diffractive imaging using imperfect crystals. Nature 530, 202–206 (2016).

    CAS  Google Scholar 

  27. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Google Scholar 

  28. Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344–1347 (2015).

    Article  CAS  Google Scholar 

  29. Chamard, V. et al. Three-dimensional X-ray Fourier transform holography: the Bragg case. Phys. Rev. Lett. 104, 165501 (2010).

    CAS  Google Scholar 

  30. Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. R. Soc. Lond. A 339, 521–553 (1992).

    Google Scholar 

  31. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    CAS  Google Scholar 

  32. Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

    CAS  Google Scholar 

  33. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    CAS  Google Scholar 

  34. Godard, P. et al. Three-dimensional high-resolution quantitative microscopy of extended crystals. Nat. Commun. 2, 568 (2011).

    CAS  Google Scholar 

  35. Berenguer, F. et al. X-ray lensless microscopy from undersampled diffraction intensities. Phys. Rev. B 88, 144101 (2013).

    Google Scholar 

  36. Pateras, A. I. et al. Nondestructive three-dimensional imaging of crystal strain and rotations in an extended bonded semiconductor heterostructure. Phys. Rev. B 92, 205305 (2015).

    Google Scholar 

  37. Birkbak, M. E., Guizar-Sicairos, M., Holler, M. & Birkedal, H. Internal structure of sponge glass fiber revealed by ptychographic nanotomography. J. Struct. Biol. 194, 124–128 (2016).

    CAS  Google Scholar 

  38. Holt, M. V. et al. Strain imaging of nanoscale semiconductor heterostructures with X-ray Bragg projection ptychography. Phys. Rev. Lett. 112, 165502 (2014).

    Google Scholar 

  39. Checa, A. G. et al. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite. J. R. Soc. Interface 10, 20130425 (2013).

    Google Scholar 

  40. Godard, P., Allain, M., Chamard, V. & Rodenburg, J. Noise models for low counting rate coherent diffraction imaging. Opt. Express 20, 25914–25934 (2012).

    Google Scholar 

  41. Takagi, S. A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn 26, 1239–1253 (1969).

    CAS  Google Scholar 

  42. Hruszkewycz, S. O. et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nat. Mater. 16, 244–251 (2017).

    CAS  Google Scholar 

  43. Nouet, J., Baronnet, A. & Howard, L. Crystallization in organo-mineral micro-domains in the crossed-lamellar layer of Nerita undata (Gastropoda, Neritopsina). Micron 43, 456–462 (2012).

    CAS  Google Scholar 

  44. Cuif, J. P. & Dauphin, Y. The Environment Recording Unit in coral skeletons—a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2, 61–73 (2005).

    CAS  Google Scholar 

  45. Bayerlein, B. et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater. 13, 1102–1107 (2014).

    CAS  Google Scholar 

  46. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    CAS  Google Scholar 

  47. Xu, A.-W., Ma, Y. & Cölfen, H. Biomimetic mineralization. J. Mater. Chem. 17, 415–449 (2007).

    CAS  Google Scholar 

  48. Frølich, S. et al. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell. Cryst. Growth Des. 15, 2761–2767 (2015).

    Google Scholar 

  49. Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    CAS  Google Scholar 

  50. Meldrum, F. C. & Coelfen, H. Crystallization and formation mechanisms of nanostructures. Nanoscale 2, 2326–2327 (2010).

    CAS  Google Scholar 

  51. Nudelman, F., Chen, H. H., Goldberg, H. A., Weiner, S. & Addadi, L. Spiers memorial lecture. Faraday Discuss. 136, 9–25 (2007).

    CAS  Google Scholar 

  52. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. & Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance tor biomineralization. Proc. Natl Acad. Sci. USA 84, 2732–2736 (1987).

    CAS  Google Scholar 

  53. Gower, L. B. & Odon, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210, 719–734 (2000).

    CAS  Google Scholar 

  54. Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

Y. Dauphin and J.-P. Cuif are warmly acknowledged for their invaluable inputs to the research programme. G. Le Moullac (IFREMER) is acknowledged for giving access to the shell samples. J. Savatier is warmly acknowledged for his help during the optical microscopy imaging session. We acknowledge the ESRF for providing access to the source. This work was funded by the French ANR under project number ANR-11-BS20-0005 and it has received funding from the European Research Council (ERC) under the European Union’s Horizon H2020 research and innovation programme grant agreement No 724881. Additional support was received from Aix-Marseille University AMidex (ANR-11-IDEX-0001-02), ANR grants France Bio Imaging (ANR-10-INSB-04-01) and France Life Imaging (ANR-11-INSB- 0006).

Author information

Authors and Affiliations

Authors

Contributions

V.C., J.Daillant and M.B. conceived the experiment with contributions from P.Godard, C.C. and P.Guenoun. P.Godard, M.A. and V.C. developed the inversion code. V.C., M.B., P.Godard, C.C. and J.Daillant performed the experiments at ID13, ESRF. The 3D ptychography reconstructions were performed by F.M. with inputs and discussion from V.C. and P.Godard. J.Duboisset performed the white light microscopy experiment and performed and analysed the CARS experiments. J.N. performed the AFM experiments. F.M., V.C., J.Daillant, C.C. and J.N. wrote the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to V. Chamard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastropietro, F., Godard, P., Burghammer, M. et al. Revealing crystalline domains in a mollusc shell single-crystalline prism. Nature Mater 16, 946–952 (2017). https://doi.org/10.1038/nmat4937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing