Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interfacial geometry dictates cancer cell tumorigenicity

Abstract

Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis1,2. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways3, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacial geometry at perimeter features directs expression of CSC markers.
Figure 2: Geometric cues activate CSCs at the perimeter through integrin α5β1, mitogen-activated protein kinase (MAPK) signalling and regulation of signal transducer and activator of transcription (STAT) pathways.
Figure 3: Cells encapsulated in model 3D microenvironments demonstrate interfacial regulation of the CSC phenotype.
Figure 4: Activated cells show higher tumorigenicity and metastatic potency in vivo.

Similar content being viewed by others

References

  1. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  Google Scholar 

  2. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer 8, 755–768 (2008).

    Article  CAS  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  4. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature Rev. Cancer 6, 449–458 (2006).

    Article  CAS  Google Scholar 

  5. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    Article  CAS  Google Scholar 

  6. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    Article  CAS  Google Scholar 

  7. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nature Mater. 11, 734–741 (2012).

    Article  CAS  Google Scholar 

  9. Tan, Y. et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nature Commun. 5, 4619 (2014).

    Article  CAS  Google Scholar 

  10. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  Google Scholar 

  11. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  12. Swift, J. et al. Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Google Scholar 

  13. Ingber, D. E. Mechanical control of tissue growth: function follows form. Proc. Natl Acad. Sci. USA 102, 11571–11572 (2005).

    Article  CAS  Google Scholar 

  14. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    Article  CAS  Google Scholar 

  15. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  16. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    Article  CAS  Google Scholar 

  17. Murphy, W. L., Mcdevitt, T. C. & Engler, A. J. Materials as stem cell regulators. Nature Mater. 13, 547–557 (2014).

    Article  CAS  Google Scholar 

  18. Gomez, E. W., Chen, Q. K., Gjorevski, N. & Nelson, C. M. Tissue geometry patterns epithelial–mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem. 110, 44–51 (2010).

    CAS  Google Scholar 

  19. Boghaert, E. et al. Host epithelial geometry regulates breast cancer cell invasiveness. Proc. Natl Acad. Sci. USA 109, 19632–19637 (2012).

    Article  CAS  Google Scholar 

  20. Medema, J. P. Cancer stem cells: the challenges ahead. Nature Cell Biol. 15, 338–344 (2013).

    Article  CAS  Google Scholar 

  21. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    Article  CAS  Google Scholar 

  22. Frank, N. Y. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65, 4320–4333 (2005).

    Article  CAS  Google Scholar 

  23. Sil, H., Sen, T. & Chatterjee, A. Fibronectin-integrin (α5β1) modulates migration and invasion of murine melanoma cell line B16F10 by involving MMP-9. Oncol. Res. 19, 335–348 (2011).

    Article  Google Scholar 

  24. Manning, M. L., Foty, R. A., Steinberg, M. S. & Schoetz, E. M. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl Acad. Sci. USA 107, 12517–12522 (2010).

    Article  CAS  Google Scholar 

  25. Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).

    Article  CAS  Google Scholar 

  26. Nicholas, C. & Lesinski, G. B. in The Jak-STAT signal transduction pathway in melanoma, 283–306 (Breakthroughs in Melanoma Research, 2011).

  27. Lee, J., Abdeen, A. A. & Kilian, K. A. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci. Rep. 4, 5188 (2014).

    Article  CAS  Google Scholar 

  28. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  29. Kollmannsberger, P., Bidan, C. M., Dunlop, J. W. C. & Fratzl, P. The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter 7, 9549–9560 (2011).

    Article  CAS  Google Scholar 

  30. Hegerfeldt, Y., Tusch, M., Bröcker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants. Cancer Res. 62, 2125–2130 (2002).

    CAS  Google Scholar 

  31. Lee, J., Abdeen, A. A., Kim, A. & Kilian, K. A. The influence of biophysical parameters on maintaining the mesenchymal stem cell phenotype. ACS Biomater. Sci. Eng. 1, 218–226 (2015).

    Article  CAS  Google Scholar 

  32. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 10.16.1–10.16.16 (2010).

    Article  Google Scholar 

  33. Damljanović, V., Lagerholm, B. C. & Jacobson, K. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39, 847–851 (2005).

    Article  Google Scholar 

  34. Chang, C.-W., van Spreeuwel, A., Zhang, C. & Varghese, S. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6, 5157–5164 (2010).

    Article  CAS  Google Scholar 

  35. Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31, 3736–3743 (2010).

    Article  CAS  Google Scholar 

  36. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  37. Zhang, D. & Kilian, K. A. The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials 34, 3962–3969 (2013).

    Article  CAS  Google Scholar 

  38. Reich, M. et al. GenePattern 2.0. Nature Genet. 38, 500–501 (2006).

    Article  CAS  Google Scholar 

  39. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 30–33 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported with funding from the American Cancer Society Illinois Division Grant # 281225 and the National Science Foundation Grant # 1454616 CAR. Graduate student (K.L.W.) support was provided by Morris Animal Foundation. We thank the Beckman Institute ITG facilities, Institute of Genomic Biology Imaging facilities, Micro and Nanotechnology Laboratory facilities, and the Roy J. Carver Biotechnology Center.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and K.A.K. conceived the ideas and designed the experiments. J.L., A.A.A., K.L.W. and T.M.F. conducted the experiments. J.L., A.A.A., K.L.W., T.M.F. and K.A.K. analysed the data. J.L., A.A.A., T.M.F. and K.A.K. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Kristopher A. Kilian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Abdeen, A., Wycislo, K. et al. Interfacial geometry dictates cancer cell tumorigenicity. Nature Mater 15, 856–862 (2016). https://doi.org/10.1038/nmat4610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4610

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer