Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible dilatancy in entangled single-wire materials

Abstract

Designing structures that dilate rapidly in both tension and compression would benefit devices such as smart filters, actuators or fasteners. This property however requires an unusual Poisson ratio, or Poisson function at finite strains, which has to vary with applied strain and exceed the familiar bounds: less than 0 in tension and above 1/2 in compression. Here, by combining mechanical tests and discrete element simulations, we show that a simple three-dimensional architected material, made of a self-entangled single long coiled wire, behaves in between discrete and continuum media, with a large and reversible dilatancy in both tension and compression. This unusual behaviour arises from an interplay between the elongation of the coiled wire and rearrangements due to steric effects, which, unlike in traditional discrete media, are hysteretically reversible when the architecture is made of an elastic fibre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental mechanical curves.
Figure 2: Numerical mechanical curves on a cylindrical sample.
Figure 3: Numerical mechanical curves on a periodic sample.
Figure 4: Phenomenological 8-chain model.

Similar content being viewed by others

References

  1. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nature Mater. 2, 715–725 (2003).

    Article  CAS  Google Scholar 

  2. Poquillon, D., Viguier, B. & Andrieu, E. Experimental data about mechanical behaviour during compression tests for various matted fibres. J. Mater. Sci. 40, 5963–5970 (2005).

    Article  CAS  Google Scholar 

  3. Masse, J. P., Salvo, L., Rodney, D., Bréchet, Y. & Bouaziz, O. Influence of relative density on the architecture and mechanical behaviour of a steel metallic wool. Scr. Mater. 54, 1379–1383 (2006).

    Article  CAS  Google Scholar 

  4. Hall, L. J. et al. Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008).

    Article  CAS  Google Scholar 

  5. Laurent, C. et al. Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: Finite elements analysis vs. X-ray tomography imaging. J. Mech. Behav. Biol. Mater. 40, 222–233 (2014).

    Article  CAS  Google Scholar 

  6. Ashby, M. Designing architectured materials. Scr. Mater. 68, 4–7 (2013).

    Article  CAS  Google Scholar 

  7. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article  CAS  Google Scholar 

  8. Barbier, C., Dendievel, R. & Rodney, D. Role of friction in the mechanics of nonbonded fibrous materials. Phys. Rev. E 80, 016115 (2009).

    Article  Google Scholar 

  9. Picu, R. C. Mechanics of random fiber networks—A review. Soft Matter 7, 6768–6785 (2011).

    Article  CAS  Google Scholar 

  10. Smith, C. W., Wootton, R. J. & Evans, K. E. Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials. Exp. Mech. 39, 356–362 (1999).

    Article  Google Scholar 

  11. Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nature Mater. 10, 823–837 (2011).

    Article  CAS  Google Scholar 

  12. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. Nature Mater. 11, 608–613 (2012).

    Article  CAS  Google Scholar 

  13. Lakes, R. Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987).

    Article  CAS  Google Scholar 

  14. Evans, K. E., Nkansah, M. A., Hutchinson, I. J. & Rogers, S. C. Molecular network design. Nature 353, 124 (1991).

    Article  CAS  Google Scholar 

  15. Delannay, F. Elastic model of an entangled network of interconnected fibres accounting for negative Poisson ratio behaviour and random triangulation. Int. J. Solids Struct. 42, 2265–2285 (2005).

    Article  Google Scholar 

  16. Tatlier, M. & Berhan, L. Modelling the negative Poisson’s ratio of compressed fused fibre networks. Phys. Status Solidi B 246, 2018–2024 (2009).

    Article  CAS  Google Scholar 

  17. Neelakantan, S., Bosbach, W., Woodhouse, J. & Markaki, A. E. Characterization and deformation response of orthotropic fibre networks with auxetic out-of-plane behaviour. Acta Mater. 66, 326–339 (2014).

    Article  CAS  Google Scholar 

  18. He, G., Tan, Q., Jiang, G. & Li, Q. A novel mechanism for auxetic behavior in entangled materials with a spiral wire structure. Smart Mater. Struct. 23, 095011 (2014).

    Article  Google Scholar 

  19. Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998).

    Article  CAS  Google Scholar 

  20. Baughman, R. H. Auxetic materials: Avoiding the shrink. Nature 425, 667 (2003).

    Article  CAS  Google Scholar 

  21. Goodwin, A. L., Keen, D. A. & Tucker, M. G. Large negative linear compressibility of Ag3[Co(CN)6]. Proc. Natl Acad. Sci. USA 105, 18708–18713 (2008).

    Article  CAS  Google Scholar 

  22. Fortes, A. D., Suard, E. & Knight, K. S. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331, 742–746 (2011).

    Article  CAS  Google Scholar 

  23. Brown, A. E., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).

    Article  CAS  Google Scholar 

  24. Zhang, M., Atkinson, K. R. & Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    Article  CAS  Google Scholar 

  25. Aliev, A. E. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323, 1575–1578 (2009).

    Article  CAS  Google Scholar 

  26. Reynolds, O. Dilatancy. Nature 33, 429–430 (1886).

    Google Scholar 

  27. Onoda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).

    Article  CAS  Google Scholar 

  28. Cates, M. E., Haw, M. D. & Holmes, C. B. Dilatancy, jamming, and the physics of granulation. J. Phys. Condens. Matter 17, S2517–S2531 (2005).

    Article  CAS  Google Scholar 

  29. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. The physics of granular materials. Phys. Today 49, 32–38 (April, 2008).

    Article  Google Scholar 

  30. Rowe, P. W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. A 269, 500–527 (1962).

    Article  Google Scholar 

  31. Bolton, M. D. The strength and dilatancy of sands. Geotechnique 36, 65–78 (1986).

    Article  Google Scholar 

  32. Tan, Q., Liu, P., Du, C., Wu, L. & He, G. Mechanical behaviors of quasi-ordered entangled aluminum alloy wire material. Mater. Sci. Eng. A 527, 38–44 (2009).

    Article  Google Scholar 

  33. Courtois, L. et al. Mechanical properties of monofilament entangled materials. Adv. Eng. Mater. 14, 1128–1133 (2012).

    Article  CAS  Google Scholar 

  34. Gadot, B. et al. Entangled single-wire NiTi material: A porous metal with tunable superelastic and shape memory properties. Acta Mater. 96, 311–323 (2015).

    Article  CAS  Google Scholar 

  35. Liu, P., He, G. & Wu, L. Uniaxial tensile stress–strain behavior of entangled steel wire material. Mater. Sci. Eng. A 509, 69–75 (2009).

    Article  Google Scholar 

  36. Antman, S. S. Nonlinear Problems of Elasticity Vol. 107, 63 (Applied Mathematical Sciences, Springer, 2005).

    Google Scholar 

  37. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B. & Grinspun, E. Discrete elastic rods. ACM Trans. Graph. 27, 63 (2008).

    Article  Google Scholar 

  38. Rodney, D., Fivel, M. & Dendievel, R. Discrete modeling of the mechanics of entangled materials. Phys. Rev. Lett. 95, 108004 (2005).

    Article  Google Scholar 

  39. Ortin, J. Preisach modeling of hysteresis for a pseudoelastic CuZnAl single crystal. J. Appl. Phys. 71, 1454–1461 (1992).

    Article  CAS  Google Scholar 

  40. Guyer, R. A. & Johnson, P. A. Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Phys. Today 52, 30–36 (April, 1999).

    Article  Google Scholar 

  41. Visintin, A. Differential Models of Hysteresis (Springer, 1994).

    Book  Google Scholar 

  42. Grima, J. N., Attard, D., Caruana-Gauci, R. & Gatt, R. Negative linear compressibility of hexagonal honeycombs and related systems. Scr. Mater. 65, 565–568 (2011).

    Article  CAS  Google Scholar 

  43. Pikhitsa, P. V. Regular network of contacting cylinders with implications for materials with negative Poisson ratios. Phys. Rev. Lett. 93, 015505 (2004).

    Article  Google Scholar 

  44. Coluci, V. R. et al. Modeling the auxetic transition for carbon nanotube sheets. Phys. Rev. B 78, 115408 (2008).

    Article  Google Scholar 

  45. Arruda, E. M. & Boyce, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993).

    Article  CAS  Google Scholar 

  46. Zhang, D. et al. Compression mechanics of nickel-based superalloy metal rubber. Mater. Sci. Eng. A 580, 305–312 (2013).

    Article  CAS  Google Scholar 

  47. Chen, X. et al. Mechanics of a carbon nanocoil. Nano Lett. 3, 1299–1304 (2003).

    Article  CAS  Google Scholar 

  48. Li, J. Atomeye: An efficient atomistic configuration viewer. Modelling Simul. Mater. Sci. Eng. 11, 173–177 (2003).

    Article  Google Scholar 

  49. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed within the French National Research Agency (ANR) programmes ‘Architectured NiTi materials’ (ANIM, N.2010 BLAN 90201) with the support of LABEX Tec21 (ANR-11-LABX-0030) of Université Grenoble Alpes and LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon (programme ‘Investissements d’Avenir’, ANR-11-IDEX-0007). D.R. acknowledges support from the Institut Universitaire de France and the Institute of Molecular Engineering of the University of Chicago. D.R. thanks J. de Pablo and H. Jaeger for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.O. and D.R. conceived the study; B.G., O.R.M., S.R.d.R. and L.O. performed the experiments; D.R. developed the numerical code; B.G. and D.R. performed the simulations; all of the authors analysed the results; D.R. and L.O. wrote the manuscript.

Corresponding author

Correspondence to David Rodney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1195 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 22365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodney, D., Gadot, B., Martinez, O. et al. Reversible dilatancy in entangled single-wire materials. Nature Mater 15, 72–77 (2016). https://doi.org/10.1038/nmat4429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing