Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

Abstract

The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication and characterization of void-forming hydrogels.
Figure 2: Manipulating stem cell osteogenesis and proliferation by controlling the elasticity of the bulk phase of void-forming hydrogels.
Figure 3: Controlling cell deployment kinetics from void-forming hydrogels in vitro and in vivo.
Figure 4: Matrix elasticity regulates MSC-mediated bone regeneration.

Similar content being viewed by others

References

  1. Wollert, K. C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: A critical appraisal. Nature Rev. Cardiol. 7, 204–215 (2010).

    Article  Google Scholar 

  2. Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105, 14347–14352 (2008).

    Article  CAS  Google Scholar 

  3. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    Article  CAS  Google Scholar 

  4. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  Google Scholar 

  5. Engler, A. J., Sen, S., Sweeny, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  6. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  7. Peyton, S. R. et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioeng. 108, 1181–1193 (2011).

    Article  CAS  Google Scholar 

  8. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2009).

    Article  Google Scholar 

  9. Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005).

    Article  CAS  Google Scholar 

  10. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    Article  CAS  Google Scholar 

  11. Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).

    Article  CAS  Google Scholar 

  12. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).

    Article  CAS  Google Scholar 

  13. Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35, 562–569 (2004).

    Article  CAS  Google Scholar 

  14. Ouyang, H. W., Goh, J. C. H., Thambyah, A., Teoh, S. H. & Lee, E. H. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng. 9, 431–439 (2003).

    Article  CAS  Google Scholar 

  15. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    Article  CAS  Google Scholar 

  16. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17, 399–403 (2005).

    Article  CAS  Google Scholar 

  17. Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720–725 (2007).

    Article  CAS  Google Scholar 

  18. Wang, H. et al. Biocompatibility and osteogeneesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28, 3338–3348 (2007).

    Article  CAS  Google Scholar 

  19. Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collageneous extracellular matrices. Nature Biotechnol. 21, 513–518 (2003).

    Article  CAS  Google Scholar 

  20. Liu Tsang, V. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21, 790–801 (2007).

    Article  Google Scholar 

  21. Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M. & Brown, R. A. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen. 8, 226–237 (2000).

    Article  CAS  Google Scholar 

  22. Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001).

    Article  CAS  Google Scholar 

  23. Gibson, L. J. & Ashby, M. F. Cellular Solids (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  24. Diduch, D. R., Coe, M. R., Joyner, C., Owen, M. E. & Balian, G. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75, 92–105 (1993).

    Article  CAS  Google Scholar 

  25. Hsiong, S. X., Boontheekul, T., Huebsch, N. & Mooney, D. J. Cyclic RGD peptides enhance 3D stem cell osteogenic differentiation. Tissue Eng. A 15, 263–272 (2009).

    Article  CAS  Google Scholar 

  26. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    Article  CAS  Google Scholar 

  27. Benoit, D. S., Schwartz, M. P., Durney, A. P. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    Article  CAS  Google Scholar 

  28. Khatiwala, C. B., Kim, P. D., Peyton, S. R. & Putnam, A. J. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24, 886–898 (2009).

    Article  CAS  Google Scholar 

  29. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M. & Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993).

    Article  CAS  Google Scholar 

  30. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).

    Article  CAS  Google Scholar 

  31. Frenette, P. S., Pinho, S., Lucas, D. & Scheirerman, C. S. Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

    Article  Google Scholar 

  32. Trappmann, B. et al. Extracelluar-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    Article  CAS  Google Scholar 

  33. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  Google Scholar 

  34. Kong, H. J., Polte, T. R., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad. Sci. USA 102, 4300–4305 (2005).

    Article  CAS  Google Scholar 

  35. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    Article  CAS  Google Scholar 

  36. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nature Mater. 13, 645–652 (2014).

    Article  CAS  Google Scholar 

  37. Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21, 758–769 (2011).

    Article  CAS  Google Scholar 

  38. Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    Article  CAS  Google Scholar 

  39. Sen, S., Engler, A. & J, Discher, D. E. Matrix strains induced by cells: Computing how far cells can feel. Cell Mol. Bioeng. 2, 39–48 (2009).

    Article  Google Scholar 

  40. Wang, Y. K. et al. Bone morphogenic protein-2 induced signaling and osteogenesis is Regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev. 21, 1176–1186 (2012).

    Article  CAS  Google Scholar 

  41. Axelrad, T. W. & Einhorn, T. A. Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev. 20, 481–4882 (2009).

    Article  CAS  Google Scholar 

  42. Platt, M. O., Wilder, C. L., Wells, A., Griffith, L. G. & Lauffenburger, D. A. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: Tissue-specific stem cells. Stem Cells 27, 2804–2814 (2009).

    Article  CAS  Google Scholar 

  43. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  44. Groen, R. W. Y. et al. Reconstructing the human hematopoietic niche in immunodeficient mice: Opportunities for studying primary multiple myeloma. Blood 120, e9–e16 (2012).

    Article  CAS  Google Scholar 

  45. Kong, H. J., Chan, J. H., Huebsch, N., Weitz, D. & Mooney, D. J. Noninvasive probing of the spatial organization of polymer chains in hydrogels using fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc. 129, 4518–4519 (2007).

    Article  CAS  Google Scholar 

  46. Kong, H. J., Smith, M. K. & Mooney, D. J. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24, 4023–4029 (2003).

    Article  CAS  Google Scholar 

  47. Mehta, M., Checa, S., Lienau, J., Hutmacher, D. & Duda, G. N. In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur. J. Cell. Mater. 24, 358–371 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Gunasekaran for assistance with sample cryosectioning, R. Choa for assistance with histologic analyses, and M. Brenner and V. Manoharan (Harvard University) for discussions on percolation. We thank K. Tomodo, P.-L. So and E. Hsiao (Gladstone Institute, San Francisco) for helpful discussions and editorial suggestions. We also acknowledge support from the Materials Research Science and Engineering Center (MRSEC, DMR-1420570) at Harvard University (D.J.M., X.Z., N.H.), funding from NIH (R37 DE013033), the Belgian American Educational Foundation (E.L.), an NSF Graduate Research Fellowship (N.H.), an Einstein Visiting Fellowship (D.J.M.) and funding of the Einstein Foundation Berlin through the Charité—Universitätsmedizin Berlin, Berlin-Brandenburg School for Regenerative Therapies GSC 203, the Harvard College Research Program (C.M.M., M.X.) and Harvard College PRISE, Herchel-Smith and Pechet Family Fund Fellowships (M.X.).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by N.H., E.L. and D.J.M. and carried out by N.H., K.L., M.M., A.M., M.C.D., R.D., S.T.K., C.V., E.L., C.M.M., M.X., O.C., W.S.K. and X.Z. New reagents and analytical tools were provided by M.M., G.N.D., K.A., A.M. and D.E.I. The manuscript was written by N.H. and D.J.M. The principal investigator is D.J.M.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huebsch, N., Lippens, E., Lee, K. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nature Mater 14, 1269–1277 (2015). https://doi.org/10.1038/nmat4407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing