Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cupric oxide as an induced-multiferroic with high-TC

Abstract

Materials that combine coupled electric and magnetic dipole order are termed ‘magnetoelectric multiferroics’1,2,3,4. In the past few years, a new class of such materials, ‘induced-multiferroics’, has been discovered5,6, wherein non-collinear spiral magnetic order breaks inversion symmetry, thus inducing ferroelectricity7,8,9. Spiral magnetic order often arises from the existence of competing magnetic interactions that reduce the ordering temperature of a more conventional collinear phase10. Hence, spiral-phase-induced ferroelectricity tends to exist only at temperatures lower than 40 K. Here, we propose that copper(II) oxides (containing Cu2+ ions) having large magnetic superexchange interactions11 can be good candidates for induced-multiferroics with high Curie temperature (TC). In fact, we demonstrate ferroelectricity with TC=230 K in cupric oxide, CuO (tenorite), which is known as a starting material for the synthesis of high-Tc (critical temperature) superconductors. Our result provides an important contribution to the search for high-temperature magnetoelectric multiferroics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal superexchange interaction J as a function of Cu–O–Cu bond angle φ for various low-dimensional cuprates.
Figure 2: Dielectric anomalies at magnetic phase transitions in CuO.
Figure 3: Electric polarization along the b* axis as a function of temperature for a CuO crystal.
Figure 4: Electric polarization hysteresis in CuO.

Similar content being viewed by others

References

  1. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  2. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  3. Khomskii, D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).

    Article  CAS  Google Scholar 

  4. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    CAS  Google Scholar 

  5. Cheong, S.-W. & Mostovoy, M. V. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  6. Kimura, T. Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

    Article  CAS  Google Scholar 

  7. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  8. Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 . Phys. Rev. Lett. 95, 087206 (2005).

    Article  CAS  Google Scholar 

  9. Arima, T. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Japan 76, 073702 (2007).

    Article  Google Scholar 

  10. Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    Article  CAS  Google Scholar 

  11. Kastner, M. A., Birgeneau, R. J., Shirane, G. & Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998).

    Article  CAS  Google Scholar 

  12. Shizmizu, T., Matsumoto, T., Goto, T., Yoshimura, K. & Kosuge, K. Magnetic dimensionality of the antiferromagnet CuO. J. Phys. Soc. Japan 72, 2165–2168 (2003).

    Article  Google Scholar 

  13. Mizuno, Y. et al. Electronic states and magnetic properties of edge-sharing Cu–O chains. Phys. Rev. B 57, 5326–5334 (1998).

    Article  CAS  Google Scholar 

  14. Tsukada, I. et al. BaCu2Si2O7: A quasi-one-dimensional S=1/2 antiferromagnetic chain system. Phys. Rev. B 60, 6601–6607 (1999).

    Article  CAS  Google Scholar 

  15. Masuda, T. et al. Spin waves and magnetic interactions in LiCu2O2 . Phys. Rev. B 72, 014405 (2005).

    Article  Google Scholar 

  16. Enderle, M. et al. Quantum helimagnetism of the frustrated spin-1/2 chain LiCuVO4 . Europhys. Lett. 70, 237–243 (2005).

    Article  CAS  Google Scholar 

  17. Park, S., Choi, Y. J., Zhang, C. L. & Cheong, S.-W. Ferroelectricity in an S=1/2 chain cuprates. Phys. Rev. Lett. 98, 057601 (2007).

    Article  CAS  Google Scholar 

  18. Naito, Y. et al. Ferroelectric transition induced by the incommensurate magnetic ordering in LiCuVO4 . J. Phys. Soc. Japan 76, 023708 (2007).

    Article  Google Scholar 

  19. Åsbrink, S. & Norrby, L.-J. A refinement of crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s. Acta Crystallogr. B 26, 8–15 (1970).

    Article  Google Scholar 

  20. Yang, B. X., Thurston, T. R., Tranquada, J. M. & Shirane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B 39, 4343–4349 (1989).

    Article  CAS  Google Scholar 

  21. Forsyth, J. B., Brown, P. J. & Wanklyn, B. M. Magnetism in cupric oxide. J. Phys. C 21, 2917–2929 (1989).

    Article  Google Scholar 

  22. Brown, P. J., Chattopadhyay, T., Forsyth, J. B., Nunez, V. & Tasset, F. Antiferromagnetism in CuO studied by neutron polarimetry. J. Phys. Condens. Matter 3, 4281–4287 (1991).

    Article  CAS  Google Scholar 

  23. Ain, M., Menelle, A., Wanklyn, B. M. & Bertaut, E. F. Magnetic structure of CuO by neutron diffraction with polarization analysis. J. Phys. Condens. Matter 4, 5327–5338 (1992).

    Article  CAS  Google Scholar 

  24. Köbler, U. & Chattopadhyay, T. On the magnetic anisotropy of CuO. Z. Phys. B 82, 383–386 (1991).

    Article  Google Scholar 

  25. Ghisen, J. et al. Electronic-structure of Cu2O and CuO. Phys. Rev. B 38, 11322–11330 (1988).

    Article  Google Scholar 

  26. Collins, B. T., DeSisto, W., Kershaw, R., Dwight, K. & Wold, A. Preparation and characterization of Cu(II) oxide. J. Less-Common Met. 156, 341–346 (1989).

    Article  CAS  Google Scholar 

  27. Zheng, X. G. et al. Dielectric measurement to probe electron ordering and electron–spin interaction. J. Appl. Phys. 92, 2703–2708 (2002).

    Article  CAS  Google Scholar 

  28. Sarkar, S., Kumar, J. P. K., Chaudhuri, B. K. & Sakata, H. Copper(II) oxide as giant dielectric material. Appl. Phys. Lett. 89, 212905 (2006).

    Article  Google Scholar 

  29. Hoshino, S., Shimaoka, K. & Niimura, N. Ferroelectricity in solid hydrogen halides. Phys. Rev. Lett. 19, 1286–1288 (1967).

    Article  CAS  Google Scholar 

  30. Prabhakaran, D. & Boothroyd, A. T. Single crystal growth of Zn-doped CuO by the floating zone method. J. Cryst. Growth 250, 77–82 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Mukuda and M. Hagiwara for their help in electric measurements, and H. Fujiwara for his help in X-ray diffraction measurements. This work was supported by the 21st Century COE Program (G18) of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Sekio, Y., Nakamura, H. et al. Cupric oxide as an induced-multiferroic with high-TC. Nature Mater 7, 291–294 (2008). https://doi.org/10.1038/nmat2125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing