Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phason dynamics in nonlinear photonic quasicrystals

Abstract

We study the dynamics of phasons in a nonlinear photonic quasicrystal. The photonic quasicrystal is formed by optical induction, and its dynamics is initiated by allowing the light waves inducing the quasicrystal to nonlinearly interact with one another. We show quantitatively that, when phason strain is introduced in a controlled manner, it relaxes through the nonlinear interactions within the photonic quasicrystal. We establish experimentally that the relaxation rate of phason strain in the quasicrystal is substantially lower than the relaxation rate of phonon strain, as predicted for atomic quasicrystals. Finally, we monitor and identify individual ‘atomic-scale’ phason flips occurring in the photonic quasicrystal as its phason strain relaxes, as well as noise-induced phason fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numerically constructed photonic quasicrystals, with and without a static linear phason-strain field.
Figure 2: Experimental observation of the relaxation of a linear phason-strain field in a photonic quasicrystal.
Figure 3: Experimental observation of phonon-strain and phason-strain relaxation following the injection of a dislocation into a photonic quasicrystal.
Figure 4: Effect of nonlinear interactions on phason density—measurements showing the exponential decay of the phason density.
Figure 5: Direct observation of phason flips that occur as a phason-strained photonic quasicrystal relaxes to its ground state.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  2. Levine, D. & Steinhardt, P. J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article  CAS  Google Scholar 

  3. Lifshitz, R. What is a crystal? Z. Kristallogr. 222, 313–317 (2007).

    Article  CAS  Google Scholar 

  4. Sethna, J. P. Entropy, Order Parameters, and Complexity Ch. 9 (Clarendon, Oxford, 2006).

    Google Scholar 

  5. Levine, D., Lubensky, T. C., Ostlund, S., Ramaswamy, S. & Steinhardt, P. J. Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520–1523 (1985).

    Article  CAS  Google Scholar 

  6. Lubensky, T. C., Ramaswamy, S. & Toner, J. Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444–7452 (1985).

    Article  CAS  Google Scholar 

  7. Socolar, J. E. S., Lubensky, T. C. & Steinhardt, P. J. Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986).

    Article  CAS  Google Scholar 

  8. Lubensky, T. C., Socolar, J. E. S., Steinhardt, P. J., Bancel, P. A. & Heiney, P. A. Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett. 57, 1440–1443 (1986).

    Article  CAS  Google Scholar 

  9. Socolar, J. E. S. & Wright, D. C. Explanation of peak shapes observed in diffraction from icosahedral quasicrystals. Phys. Rev. Lett. 59, 221–224 (1987).

    Article  CAS  Google Scholar 

  10. Jarić, M. V. & Nelson, D. R. Diffuse scattering from quasicrystals. Phys. Rev. B 37, 4458–4472 (1988).

    Article  Google Scholar 

  11. Bancel, P. A. Comment on a paper by Linus Pauling. Proc. Natl Acad. Sci. 86, 8600–8601 (1989).

    Article  CAS  Google Scholar 

  12. Bancel, P. A. Dynamical phasons in a perfect quasicrystal. Phys. Rev. Lett. 63, 2741–2744 (1989)ibid 64, 496 (1990).

    Article  CAS  Google Scholar 

  13. Jiang, J. C., Fung, K. K. & Kuo, K. H. Discommensurate microstructures in phason-strained octagonal quasicrystal phases of Mo–Cr–Ni. Phys. Rev. Lett. 68, 616–619 (1992).

    Article  CAS  Google Scholar 

  14. Li, H. L., Zhang, Z. & Kuo, K. H. Experimental Ammann-line analysis of phasons in the Al–Cu–Co–Si decagonal quasicrystal. Phys. Rev. B 50, 3645–3647 (1994).

    Article  CAS  Google Scholar 

  15. de Boissieu, M. et al. Diffuse scattering and phason elasticity in the AlPdMn icosahedral phase. Phys. Rev. Lett. 75, 89–92 (1995).

    Article  CAS  Google Scholar 

  16. Edagawa, K., Suzuki, K. & Takeuchi, S. High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al–Cu–Co. Phys. Rev. Lett. 85, 1674–1677 (2000).

    Article  CAS  Google Scholar 

  17. Edagawa, K., Suzuki, K. & Takeuchi, S. HRTEM observation of phason flips in Al–Cu–Co decagonal quasicrystal. J. Alloys Compounds 342, 271–277 (2002).

    Article  CAS  Google Scholar 

  18. Francoual, S. et al. Dynamics of phason fluctuations in the i-AlPdMn quasicrystal. Phys. Rev. Lett. 91, 225501 (2003).

    Article  CAS  Google Scholar 

  19. Janssen, T., Radulescu, O. & Rubtsov, A. N. Phasons, sliding modes and friction. Eur. Phys. J. B 29, 85–95 (2002).

    Article  CAS  Google Scholar 

  20. Henley, C. L., de Boissieu, M. & Steurer, W. Discussion on clusters, phasons and quasicrystal stabilization. Phil. Mag. 86, 1131–1151 (2006).

    Article  CAS  Google Scholar 

  21. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    Article  CAS  Google Scholar 

  22. Edwards, W. S. & Fauve, S. Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47, R788–R791 (1993).

    Article  CAS  Google Scholar 

  23. Edwards, W. S. & Fauve, S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123–148 (1994).

    Article  Google Scholar 

  24. Lifshitz, R. & Petrich, D. M. Theoretical model for Faraday waves with multiple-frequency forcing. Phys. Rev. Lett. 79, 1261–1264 (1997).

    Article  CAS  Google Scholar 

  25. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  Google Scholar 

  26. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: Mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    Article  Google Scholar 

  27. Lifshitz, R. & Diamant, H. Soft quasicrystals—Why are they stable? Phil. Mag. 87, 3021–3030 (2007).

    Article  CAS  Google Scholar 

  28. Jin, C. et al. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999).

    Article  CAS  Google Scholar 

  29. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000).

    Article  CAS  Google Scholar 

  30. Lifshitz, R., Arie, A. & Bahabad, A. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005).

    Article  Google Scholar 

  31. Bratfalean, R. T., Peacock, A. C., Broderick, N. G. R., Gallo, K. & Lewen, R. Harmonic generation in a two-dimensional nonlinear quasicrystal. Opt. Lett. 30, 424–426 (2005).

    Article  CAS  Google Scholar 

  32. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005).

    Article  CAS  Google Scholar 

  33. Roichman, Y. & Grier, D. G. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express 13, 5434–5439 (2005).

    Article  Google Scholar 

  34. Efremidis, N. K., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    Article  Google Scholar 

  35. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003).

    Article  Google Scholar 

  36. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  CAS  Google Scholar 

  37. Cohen, O. et al. Observation of random-phase lattice solitons. Nature 433, 500–503 (2005).

    Article  CAS  Google Scholar 

  38. Fleischer, J. W. et al. Observation of vortex-ring discrete solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004).

    Article  Google Scholar 

  39. Neshev, D. N., Alexander, T. J., Ostrovskaya, E. A. & Kivshar, Y. S. Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).

    Article  Google Scholar 

  40. Schwartz, T., Baral, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  CAS  Google Scholar 

  41. Segev, M., Valley, G. C., Crosignani, B., DiPorto, P. & Yariv, A. Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994).

    Article  CAS  Google Scholar 

  42. Chiao, R. Y., Garmire, E. & Townes, C. H. Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964).

    Article  Google Scholar 

  43. Barak, G. & Lifshitz, R. Dislocation dynamics in a dodecagonal quasiperiodic structure. Phil. Mag. 86, 1059–1064 (2006).

    Article  CAS  Google Scholar 

  44. Martin, H., Eugenieva, E. D., Chen, Z. & Christodoulides, D. N. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett. 92, 123902 (2004).

    Article  Google Scholar 

  45. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Steinhardt for ideas about inducing artificial phason-strain fields. R.L. is grateful to M. de Boissieu, M. Cross and M. Widom for useful discussions. This work was supported by the Israel Science Foundation, the Israel–USA Binational Science Foundation, the German–Israeli DIP Project and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie 1 (MOV 2454 kb)

Supplementary Information

Supplementary movie 2 (MOV 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, B., Lifshitz, R., Fleischer, J. et al. Phason dynamics in nonlinear photonic quasicrystals. Nature Mater 6, 776–781 (2007). https://doi.org/10.1038/nmat1981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing