Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photocontrolled living polymerizations

Abstract

Living polymerizations involve the creation of polymer chains without significant irreversible chain transfer or chain termination1. Such processes are widely used to access well-defined macromolecular materials with controlled architectures, such as block and star polymers. Although this concept was first realized for anionic polymerizations in the 1950s2, many key recent advances have been made, most notably in the area of radical polymerization3,4,5,6. Here, we report a living photopolymerization that involves photoexcited monomers. Exposure of metal-containing ferrocenophane monomers to Pyrex-filtered light from a mercury lamp (λ>310 nm) or to bright sunlight in the presence of an anionic initiator leads to living polymerizations, in which the conversion and molecular weight of the resulting polymer can be controlled by the irradiation time. Photoirradiation selectively weakens the iron–cyclopentadienyl bond in the monomer, allowing the use of moderately basic and highly functional-group-tolerant initiators. The polymerization proceeds through attack of the initiator and propagating anion on the iron atom of the photoexcited monomer and, remarkably, the polymerization rate decreases with increasing temperature. Block copolymer formation is possible when the light source is alternately switched on and off in between sequential addition of different monomers, providing unprecedented, photocontrolled access to new types of functional polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photocontrolled living ROP of monomer 1.
Figure 2: Plot of −ln(1−DPn[I]0/[M]0) versus irradiation time for the photopolymerization of 1 using a monomer:initiator ratio of 40:1.
Figure 3: Mechanistic scheme for photolytic living ROP.
Figure 4: Synthesis of block copolymer 8 with controlled architecture by sequential photocontrolled ROP.

Similar content being viewed by others

References

  1. Odian, G. G. Principles of Polymerization (Wiley, New York, 1981).

    Google Scholar 

  2. Szwarc, M. ‘Living’ polymers. Nature 178, 1168–1169 (1956).

    Article  Google Scholar 

  3. Patten, T. E., Xia, J., Abernathy, T. & Matyjaszewski, K. Polymers with very low polydispersities from atom transfer radical polymerization. Science 272, 866–868 (1996).

    Article  Google Scholar 

  4. Georges, M. K., Veregin, R. P. N., Kazmaier, P. M. & Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26, 2987–2988 (1993).

    Article  Google Scholar 

  5. Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28, 1721–1723 (1995).

    Article  Google Scholar 

  6. Akatsuka, M., Aida, T. & Inoue, S. High-speed “immortal” polymerization of epoxides initiated with aluminum porphyrin. Acceleration of propagation and chain-transfer reactions by a Lewis acid. Macromolecules 27, 2820–2825 (1994).

    Article  Google Scholar 

  7. Manners, I. Poly(ferrocenylsilanes): novel organometallic plastics. Chem. Commun. 857–865 (1999).

  8. Tanabe, M. & Manners, I. Photolytic living anionic ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes via an iron-cyclopentadienyl bond cleavage mechanism. J. Am. Chem. Soc. 126, 11434–11435 (2004).

    Article  Google Scholar 

  9. Mizuta, T., Imamura, Y. & Miyoshi, K. Ring-opening reaction of phosphorus-bridged [1]ferrocenophane via ring slippage fromη5- toη1-Cp. J. Am. Chem. Soc. 125, 2068–2069 (2003).

    Article  Google Scholar 

  10. Berenbaum, A. et al. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged [1]ferrocenophanes. J. Am. Chem. Soc. 122, 5765–5774 (2000).

    Article  Google Scholar 

  11. Yamaguchi, Y. & Kutal, C. Efficient photodissociation of anions from benzoyl-functionalized ferrocene complexes. Inorg. Chem. 38, 4861–4867 (1999).

    Article  Google Scholar 

  12. Ding, W. et al. Characterization of the low-energy electronic excited states of benzoyl-substituted ferrocenes. Inorg. Chem. 42, 1532–1537 (2003).

    Article  Google Scholar 

  13. Rulkens, R. et al. Highly strained, ring-tilted [1]ferrocenophanes containing group 16 elements in the bridge: synthesis, structures, and ring-opening oligomerization and polymerization of [1]thia- and [1]selenaferrocenophanes. J. Am. Chem. Soc. 119, 10976–10986 (1997).

    Article  Google Scholar 

  14. Barlow, S. et al. Electronic structure of strained silicon- and sulfur-bridged [1]ferrocenophanes and an analogous dicarbon-bridged [2]ferrocenophane: an investigation by photoelectron spectroscopy and density-functional theory. Organometallics 17, 2113–2120 (1998).

    Article  Google Scholar 

  15. Harrigan, R. W., Hammond, G. S. & Gray, H. B. Photochemistry of titanocene(IV) derivatives. J. Organomet. Chem. 81, 79–85 (1974).

    Article  Google Scholar 

  16. Penczek, S., Kubisa, P. & Szymanski, R. On the diagnostic criteria of the livingness of polymerizations. Makromol. Chem. Rapid Commun. 12, 77–80 (1991).

    Article  Google Scholar 

  17. Manners, I. Putting metals into polymers. Science 294, 1664–1666 (2001).

    Article  Google Scholar 

  18. Bender, J. L. et al. Site-isolated luminescent europium complexes with polyester macroligands: metal-centered heteroarm stars and nanoscale assemblies with labile block junctions. J. Am. Chem. Soc. 124, 8526–8527 (2002).

    Article  Google Scholar 

  19. Eitouni, H. B. & Balsara, N. P. Effect of chemical oxidation on the self-assembly of organometallic block copolymers. J. Am. Chem. Soc. 126, 7446–7447 (2004).

    Article  Google Scholar 

  20. Temple, K. et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane) (PS-PFS). Adv. Mater. 15, 297–300 (2003).

    Article  Google Scholar 

  21. Lastella, S. et al. Density control of single-walled carbon nanotubes using patterned iron nanoparticle catalysts derived from phase-separated thin films of a polyferrocene block copolymer. J. Mater. Chem. 14, 1791–1794 (2004).

    Article  Google Scholar 

  22. Hinderling, C. et al. Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 16, 876–879 (2004).

    Article  Google Scholar 

  23. Kloninger, C. & Rehahn, M. 1,1-dimethylsilacyclobutane-mediated living anionic block copolymerization of [1]dimethylsilaferrocenophane and methyl methacrylate. Macromolecules 37, 1720–1727 (2004).

    Article  Google Scholar 

  24. Lohmeijer, B. G. G. & Schubert, U. S. Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew. Chem. Int. Edn 41, 3825–3829 (2002).

    Article  Google Scholar 

  25. Hou, S., Man, K. Y. K. & Chan, W. K. Nanosized micelles formed by the self-assembly of amphiphilic block copolymers with luminescent rhenium complexes. Langmuir 19, 2485–2490 (2003).

    Article  Google Scholar 

  26. Massey, J. A. et al. Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer. J. Am. Chem. Soc. 123, 3147–3148 (2001).

    Article  Google Scholar 

  27. Mîinea, L. A., Sessions, L. B., Ericson, K. D., Glueck, D. S. & Grubbs, R. B. Phenylethynylstyrene-cobalt carbonyl block copolymer composites. Macromolecules 37, 8967–8972 (2004).

    Article  Google Scholar 

  28. Herberhold, M. Distorted sandwich compounds: [1]ferrocenophanes and [2]ruthenocenophanes. Angew. Chem. Int. Edn 34, 1837–1839 (1995).

    Article  Google Scholar 

  29. Braunschweig, H. et al. Synthesis and structure of [Cr{(η6-C6H5)2B{NtBu(SiMe3)}} ] and [Cr{(η6-C6H5)2(BNMe2)2} ], the first boron-bridged metalloarenophanes. Organometallics 23, 1968–1970 (2004).

    Article  Google Scholar 

  30. Berenbaum, A. & Manners, I. Transition metal-catalyzed ring-opening polymerization (ROP) of strained, silicon-bridged bis(benzene)chromium complexes. Dalton Trans. 2057–2058 (2004).

  31. Vogel, U., Lough, A. J. & Manners, I. Isolation of [1]ruthenocenophanes: synthesis of polyruthenocenylstannanes by ring-opening polymerization. Angew. Chem. Int. Edn 43, 3321–3325 (2004).

    Article  Google Scholar 

  32. Tamm, M. et al. Ansa-cycloheptatrienyl-cyclopentadienyl complexes. Angew. Chem. Int. Edn 43, 5530–5534 (2004).

    Article  Google Scholar 

  33. Schachner, J. A., Lund, C. L., Quail, J. W. & Müller, J. Synthesis and characterization of the first aluminum-bridged [1]ferrocenophane. Organometallics 24, 785–787 (2005).

    Article  Google Scholar 

  34. Elschenbroich, C., Paganelli, F., Nowotny, M., Neumüller, B. & Burghaus, O. Trovacene chemistry. 10. the [cyclic] [1]- and [2]silatrovacenophanes (η7-C7H6)V(η5-C5H4SiR2) and (η7-C7H6)V(η5-C5H4SiR2SiR2) (R=Me, Ph): synthesis, structure, and ring opening. Z. Anorg. Allg. Chem. 630, 1599–1606 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

N. Coombs and M. Mamak are acknowledged for their assistance with electron microscopy imaging. X. Lou is acknowledged for his help with the GPC experiments. G.W.M.V. thanks the Deutsche Forschungsgemeinschaft (DFG) for a postdoctoral research stipend. W.Y.C thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for a postgraduate scholarship. I.M. thanks the European Union for a Marie-Curie Chair and the Royal Society for a Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table 1, figures 1 and 2, materials and methods (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, M., Vandermeulen, G., Chan, W. et al. Photocontrolled living polymerizations. Nature Mater 5, 467–470 (2006). https://doi.org/10.1038/nmat1649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing