Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic transitions from smooth to rough to twinning in dislocation motion

Abstract

The motion of dislocations in response to stress dictates the mechanical behaviour of materials. However, it is not yet possible to directly observe dislocation motion experimentally at the atomic level. Here, we present the first observations of the long-hypothesized kink-pair mechanism in action using atomistic simulations of dislocation motion in iron. In a striking deviation from the classical picture, dislocation motion at high strain rates becomes rough, resulting in spontaneous self-pinning and production of large quantities of debris. Then, at still higher strain rates, the dislocation stops abruptly and emits a twin plate that immediately takes over as the dominant mode of plastic deformation. These observations challenge the applicability of the Peierls threshold concept to the three-dimensional motion of screw dislocations at high strain rates, and suggest a new interpretation of plastic strength and microstructure of shocked metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A dislocation made of disorder.
Figure 2: Simulation setup and results.
Figure 3: The kink-pair mechanism of smooth dislocation motion at 300 K and τyz = 500 MPa.
Figure 4: Rough motion and debris production.
Figure 5: Cross-kink mechanism of self-pinning and debris production.
Figure 6: Twinning initiation by dislocation.

Similar content being viewed by others

References

  1. Hirth, J.P. & Lothe, J. Theory of dislocations (Wiley, New York, 1982).

    Google Scholar 

  2. Kuhlmann-Wilsdorf, D. & Wilsdorf, H.G.F. Dislocation movements in metals. Science 144, 17–25 (1964).

    Article  CAS  Google Scholar 

  3. Bullough, R. & Tewary, V.K. in Dislocations in Solids Vol. 2 (ed. Nabarro, F.R.N.) Ch. 5 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  4. Duesbery, M.S. in Dislocations in Solids Vol. 8 (ed. Nabarro, F.R.N.) Ch. 39 (North Holland, Amsterdam, 1989).

    Google Scholar 

  5. Bulatov, V.V., Abraham, F.F., Kubin, L., Devincre, B. & Yip, S. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998).

    Article  CAS  Google Scholar 

  6. Zhou, S.J., Preston, D.L., Lomdahl, P.S. & Beazley, D.M. Large-scale molecular dynamics simulations of dislocation intersection in copper. Science 279, 1525–1527 (1998).

    Article  CAS  Google Scholar 

  7. Gumbsch, P. & Gao, H. Dislocations faster than the speed of sound. Science 283, 965–968 (1999).

    Article  CAS  Google Scholar 

  8. Diaz de la Rubia, T. et al. Multiscale modelling of plastic flow localization in irradiated metals. Nature 406, 871–874 (2000).

    Article  Google Scholar 

  9. Miguel, M.-C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J.-R. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001).

    Article  CAS  Google Scholar 

  10. Li, J., Van Vliet, K.J., Zhu, T. & Yip, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  CAS  Google Scholar 

  11. Maunuksela, J. et al. Kinetic roughening in slow combustion of paper. Phys. Rev. Lett. 79, 1515–1518 (1997).

    Article  CAS  Google Scholar 

  12. Barabasi, A.-L. & Stanley, H.E. Fractal Concepts in Surface Growth (Cambridge Univ. Press, Cambridge, UK, 1995).

    Book  Google Scholar 

  13. Tonomura, A. et al. Motion of vortices in superconductors. Nature 397, 308–309 (1999).

    Article  CAS  Google Scholar 

  14. Surdeanu, R. et al. Kinetic roughening of penetrating flux fronts in high-Tc thin film superconductors. Phys. Rev. Lett. 83, 2054–2057 (1999).

    Article  CAS  Google Scholar 

  15. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    Article  CAS  Google Scholar 

  16. Devincre, B. & Kubin, L.P. Mesoscopic simulations of dislocations and plasticity. Mater. Sci. Eng. A 234, 8–14 (1997).

    Article  Google Scholar 

  17. Duesbery, M.S. Dislocation motion, constriction and cross-slip in fcc metals. Model. Simul. Mater. Sci. 6, 35–49 (1998).

    Article  CAS  Google Scholar 

  18. Vegge, T., Rasmussen, T., Leffers, T., Pedersen, O.B. & Jacobsen, K.W. Atomistic simulations of cross-slip of jogged screw dislocations in copper. Phil. Mag. Lett. 81, 137–144 (2001).

    Article  CAS  Google Scholar 

  19. Peierls, R.E. The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940).

    Article  Google Scholar 

  20. Marian, J. Improved Understanding of Radiation Damage in Ferritic Alloys: A Multiscale Modeling Study Thesis, Universidad Politécnica de Madrid (2002).

    Google Scholar 

  21. Ngan, A.H.W. & Wen, M. Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals. Phys. Rev. Lett. 87, 075505 (2001).

    Article  CAS  Google Scholar 

  22. Louchet, F. & Viguier, B. Ordinary dislocations in γ-TiAl: cusp unzipping, jog dragging and stress anomaly. Phil. Mag. A 80, 765–779 (2000).

    Article  CAS  Google Scholar 

  23. Vitek, V. Theory of core structures of dislocations in body-centered cubic metals. Cryst. Latt. Def. Amorp. 5, 1–34 (1974).

    CAS  Google Scholar 

  24. Ackland, G.J., Bacon, D.J., Calder, A.F. & Harry, T. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential. Phil. Mag. A 75, 713–732 (1997).

    Article  CAS  Google Scholar 

  25. Chang, J., Cai, W., Bulatov, V.V. & Yip, S. Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Comp. Mater. Sci. 23, 111–115 (2002).

    Article  CAS  Google Scholar 

  26. Woodward, C. & Rao, S.I. Flexible ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 88, 216402 (2002).

    Article  CAS  Google Scholar 

  27. Kaufmann, H.-J., Luft, A. & Schulze, D. Deformation mechanism and dislocation structure of high-purity molybdenum single-crystals at low temperatures. Cryst. Res. Technol. 19, 357–372 (1984).

    Article  CAS  Google Scholar 

  28. Pal-Val, P.P. & Kauffman, H.-J. Variation of low-temperature internal-friction at microplastic deformation of high-purity molybdenum single-crystals. Cryst. Res. Technol. 19, 1049–1055 (1984).

    Article  CAS  Google Scholar 

  29. Dai, Y. & Victoria, M. Defect structures in deformed FCC metals. Acta Mater. 45, 3495–3501 (1997).

    Article  CAS  Google Scholar 

  30. Kiritani, M. et al. Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations. Phil. Mag. Lett. 79, 797–804 (1999).

    Article  CAS  Google Scholar 

  31. Vegge, T., Leffers, T., Pedersen, O.B. & Jacobsen, K.W. Atomistic simulations of jog migration on extended screw dislocations. Mater. Sci. Eng. A 319, 119–123 (2001).

    Article  Google Scholar 

  32. Hirsch, P.B. & Humphrey, F.J. Deformation of single crystals of copper and copper-zinc alloys containing alumina particles. 1. Macroscopic properties and work hardening theory. Proc. R. Soc Lon. A 318, 45–72 (1970).

    Article  CAS  Google Scholar 

  33. Bacon, D.J., Kocks, U.F. & Scattergood, R.O. Effect of dislocation self-interaction on Orowan stress. Philos. Mag. 28, 1241–1263 (1973).

    Article  Google Scholar 

  34. Hsiung, L.M. & Lassila, D.H. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals. CMES-Comp. Model. Eng. 3, 185–191 (2002).

    Google Scholar 

  35. Odette, G.R., Wirth, B.D., Bacon, D.J. & Ghoniem, N.M. Multiscale-multiphysics modeling of radiation-damaged materials: embrittlement of pressure-vessel steels. Mater. Res. Soc. Bull. 26, 176–182 (2001).

    Article  CAS  Google Scholar 

  36. Alshits, V.I. & Indenbom, V.L. in Dislocations in Solids Vol. 7 (ed. Nabarro, F.R.N.) Ch. 34 (North-Holland, Amsterdam, 1986).

    Google Scholar 

  37. Sleeswyk, A.F. 1/2[111] screw dislocations and nucleation of [112][111] twins in the bcc lattice. Philos. Mag. 8, 1467–1486 (1963).

    Article  Google Scholar 

  38. Lagerlof, K.P.D. On deformation twinning in bcc metals. Acta Metall. Mater. 41, 2143–2151 (1993).

    Article  CAS  Google Scholar 

  39. Allen, M.P. & Tildesley, D.J. Computer Simulation of Liquids (Clarendon, Oxford, UK, 1989).

    Google Scholar 

  40. Hoover, W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  41. Kelchner, C.L., Plimpton, S.J. & Hamilton, J.C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Marian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marian, J., Cai, W. & Bulatov, V. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nature Mater 3, 158–163 (2004). https://doi.org/10.1038/nmat1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing