Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells

Abstract

A major problem hampering effective stem cell–based therapies is the absence of a clear understanding of the human hematopoietic stem cell (HSC) pool composition. The severe combined immunodeficiency (SCID) repopulating cell (SRC) xenotransplant assay system provides a powerful tool for characterizing the frequency, cell surface markers, cell cycle status, homing and response to cytokine stimulation of human HSCs1,2,3. Clonal tracking of retrovirally transduced SRCs and transplantation of specific subpopulations revealed SRC classes with distinct repopulation potentials4,5,6,7. However, all HSC repopulation assays are based on intravenous injection, a complex process that requires circulation through blood, recognition and extravasation through bone marrow vasculature, and migration to a supportive microenvironment8,9,10,11. Thus, some classes of HSCs may remain undetected. By direct intrafemoral injection, we identified rapid SRCs (R-SRCs) within the LinCD34+CD38loCD36 subpopulation. R-SRCs rapidly generate high levels of human myeloid and erythroid cells within the injected femur, migrate to the blood and colonize individual bones of non-obese diabetic (NOD)-SCID mice within 2 weeks after transplantation. Lentivector-mediated clonal analysis of individual R-SRCs revealed heterogeneity in their proliferative and migratory properties. The identification of a new HSC class and an effective intrafemoral assay provide the tools required to develop more effective stem cell–based therapies that rely on rapid reconstitution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic analysis of human cell engraftment after intrafemoral and intravenous delivery of LinCD34+ cord blood cells.
Figure 2: Multilineage engraftment of human cells after intrafemoral transplantation into NOD-SCID mice.
Figure 3: R-SRCs belong to the LinCD34+CD38loCD36 cell fraction.
Figure 4: Heterogeneity of the proliferative and migration potential of gene-marked cells 3 weeks after intrafemoral injection.

Similar content being viewed by others

References

  1. Wang, J.C. et al. Normal and leukemic human stem cells assayed in immune-deficient mice. in Hematopoiesis: A Developmental Approach (ed. Zon, L.I.) 99–118 (Oxford University Press, New York, 2001).

    Google Scholar 

  2. Lapidot, T. & Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30, 973–981 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bonnet, D. Haematopoietic stem cells. J. Pathol. 197, 430–440 (2002).

    Article  PubMed  Google Scholar 

  4. Guenechea, G., Gan, O.I., Dorrell, C. & Dick, J.E. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2, 75–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Glimm, H. et al. Previously undetected human hematopoietic cell populations with short- term repopulating activity selectively engraft NOD-SCID-beta2 microglobulin-null mice. J. Clin. Invest. 107, 199–206. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kerre, T.C. et al. Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion. J. Immunol. 167, 3692–3698 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hogan, C.J., Shpall, E.J. & Keller, G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD-SCID mice. Proc. Natl. Acad. Sci. USA 99, 413–418 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD-SCID mice. Blood 95, 3289–3296 (2000).

    CAS  PubMed  Google Scholar 

  9. van Hennik, P.B., de Koning, A.E. & Ploemacher, R.E. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 94, 3055–3061 (1999).

    CAS  PubMed  Google Scholar 

  10. Quesenberry, P.J. & Becker, P.S. Stem cell homing: rolling, crawling, and nesting. Proc. Natl. Acad. Sci. USA 95, 15155–15157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cashman, J. & Eaves, C. High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD-SCID mice. Blood 96, 3979–3981 (2000).

    CAS  PubMed  Google Scholar 

  12. Cashman, J.D. et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 89, 4307–4316 (1997).

    CAS  PubMed  Google Scholar 

  13. Wang, J.C., Doedens, M. & Dick, J.E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89, 3919–3924 (1997).

    CAS  PubMed  Google Scholar 

  14. Conneally, E., Cashman, J., Petzer, A. & Eaves, C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl. Acad. Sci. USA 94, 9836–9841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yahata, T. et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD-SCID mice bone marrow. Blood 101, 2905–2913 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia, M., Wang, J.C.Y., Kapp, U., Bonnet, D. & Dick, J.E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 94, 5320–5325 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O.I. & Dick, J.E. A newly discovered class of human hematopoietic cells with SCID- repopulating activity. Nat. Med. 4, 1038–1045 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ando, K. et al. Extensive generation of human cord blood CD34(+) stem cells from Lin(−) CD34(−) cells in a long-term in vitro system. Exp. Hematol. 28, 690–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lemischka, I.R. & Jordan, C.T. The return of clonal marking sheds new light on human hematopoietic stem cells. Nat. Immunol. 2, 11–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Guenechea, G. et al. Transduction of human CD34+CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. 1, 452–459 (2000).

    Article  Google Scholar 

  21. Boggs, D.R. The total marrow mass of the mouse: a simplified method of measurement. Am. J. Hematol. 16, 277–286 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Ueda, T. et al. Expansion of human NOD-SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J. Clin. Invest. 105, 1013–1021 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, J. et al. SCID-repopulating cell activity of human cord blood-derived CD34-negative cells assured by intra-bone marrow injection. Blood 101, 2924–2931 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Hagglund, H. et al. Intraosseous compared to intravenous infusion of allogeneic bone marrow. Bone Marrow Transpl. 21, 331–315 (1998).

    Article  CAS  Google Scholar 

  25. Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P Scheufler, P. Savage and the entire Obstetrics unit (Trillium Hospital) for providing cord blood samples; J. McKenzie for assistance with Southern analysis; S. Zhao (Hospital for Sick Children) for sorting; and T. Lapidot (Wiezmann Institute) and members of the Dick lab for critical comments on the manuscript. This work was supported by grants from the Association pour la Recherche contre le Cancer (F.M.), the Stem Cell Network of National Centres of Excellence (F.M. and J.E.D.) and the National Cancer Institute of Canada, with funds from the Canadian Cancer Society, the Canadian Genetic Diseases Network of the National Centres of Excellence, the Canadian Institutes for Health Research and a Canada Research Chair (J.E.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurier, F., Doedens, M., Gan, O. et al. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 9, 959–963 (2003). https://doi.org/10.1038/nm886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing