Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The thrombomodulin–protein C system is essential for the maintenance of pregnancy

Abstract

Disruption of the mouse gene encoding the blood coagulation inhibitor thrombomodulin (Thbd) leads to embryonic lethality caused by an unknown defect in the placenta. We show that the abortion of thrombomodulin-deficient embryos is caused by tissue factor–initiated activation of the blood coagulation cascade at the feto-maternal interface. Activated coagulation factors induce cell death and growth inhibition of placental trophoblast cells by two distinct mechanisms. The death of giant trophoblast cells is caused by conversion of the thrombin substrate fibrinogen to fibrin and subsequent formation of fibrin degradation products. In contrast, the growth arrest of trophoblast cells is not mediated by fibrin, but is a likely result of engagement of protease-activated receptors (PAR)-2 and PAR-4 by coagulation factors. These findings show a new function for the thrombomodulin–protein C system in controlling the growth and survival of trophoblast cells in the placenta. This function is essential for the maintenance of pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth inhibition and death of thrombomodulin-deficient trophoblast cells.
Figure 2: Anti-coagulation therapy inhibits resorption of Thbd−/− embryos.
Figure 3: Reduction or elimination of tissue factor activity restores normal development of Thbd−/− embryos.
Figure 4: Inhibition of fibrinolysis suppresses resorption and trophoblast cell death induced by fibrin degradation products.
Figure 5: Regulation of trophoblast proliferation by PARs.

Similar content being viewed by others

References

  1. Esmon, C.T. Regulation of blood coagulation. Biochim. Biophys. Acta 1477, 349–360 (2000).

    Article  CAS  Google Scholar 

  2. Taylor, F.B., Peer, G.T., Lockhart, M.S., Ferrell, G. & Esmon, C.T. Endothelial cell protein C receptor plays an important role in protein C activation in vivo. Blood 97, 1685–1688 (2001).

    Article  CAS  Google Scholar 

  3. Healy, A.M., Rayburn, H.B., Rosenberg, R.D. & Weiler, H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. USA 92, 850–854 (1995).

    Article  CAS  Google Scholar 

  4. Weiler-Guettler, H., Aird, W.C., Rayburn, H., Husain, M. & Rosenberg, R.D. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122, 2271–2281 (1996).

    CAS  Google Scholar 

  5. Weiler-Guettler, H., Aird, W.C., Husain, M., Rayburn, H. & Rosenberg, R.D. Targeting of transgene expression to the vascular endothelium of mice by homologous recombination at the thrombomodulin locus. Circ. Res. 78, 180–187 (1996).

    Article  CAS  Google Scholar 

  6. Isermann, B., Hendrickson, S.B., Hutley, K., Wing, M. & Weiler, H. Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128, 827–838 (2001).

    CAS  PubMed  Google Scholar 

  7. Weiler-Guettler, H. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Invest. 101, 1983–1991 (1998).

    Article  CAS  Google Scholar 

  8. Zhang, Y. et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 101, 1301–1309 (1998).

    Article  CAS  Google Scholar 

  9. Wang, W., Nagashima, M., Schneider, M., Morser, J. & Nesheim, M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J. Biol. Chem. 275, 22942–22947 (2000).

    Article  CAS  Google Scholar 

  10. Nesheim, M. et al. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb. Haemost. 78, 386–391 (1997).

    Article  CAS  Google Scholar 

  11. Weitz, J.I., Hudoba, M., Massel, D., Maraganore, J. & Hirsh, J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J. Clin. Invest. 86, 385–391 (1990).

    Article  CAS  Google Scholar 

  12. Zivelin, A., Rao, L.V. & Rapaport, S.I. Mechanism of the anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual procoagulant vitamin K- dependent clotting factors. J. Clin. Invest. 92, 2131–2140 (1993).

    Article  CAS  Google Scholar 

  13. Carmeliet, P. et al. Role of tissue factor in embryonic blood vessel development. Nature 383, 73–75 (1996).

    Article  CAS  Google Scholar 

  14. Bugge, T.H. et al. Fatal embryonic bleeding events in mice lacking tissue factor, the cell- associated initiator of blood coagulation. Proc. Natl. Acad. Sci. USA 93, 6258–6263 (1996).

    Article  CAS  Google Scholar 

  15. Toomey, J.R., Kratzer, K.E., Lasky, N.M., Stanton, J.J. & Broze, G.J. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88, 1583–1587 (1996).

    CAS  PubMed  Google Scholar 

  16. Parry, G.C., Erlich, J.H., Carmeliet, P., Luther, T. & Mackman, N. Low levels of tissue factor are compatible with development and hemostasis in mice. J. Clin. Invest. 101, 560–569 (1998).

    Article  CAS  Google Scholar 

  17. Erlich, J. et al. Tissue factor is required for uterine hemostasis and maintenance of the placental labyrinth during gestation. Proc. Natl. Acad. Sci. USA 96, 8138–8143 (1999).

    Article  CAS  Google Scholar 

  18. Suh, T.T. et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 9, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  19. Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  20. Ratts, V.S. et al. Expression of BCL-2, BAX and BAK in the trophoblast layer of the term human placenta: a unique model of apoptosis within a syncytium. Placenta 21, 361–366 (2000).

    Article  CAS  Google Scholar 

  21. Toki, T. et al. Inverse relationship between apoptosis and Bcl-2 expression in syncytiotrophoblast and fibrin-type fibrinoid in early gestation. Mol. Hum. Reprod. 5, 246–251 (1999).

    Article  CAS  Google Scholar 

  22. Tsumagari, T. & Tanaka, K. Effects of fibrinogen degradation products on glomerular mesangial cells in culture. Kidney Int. 26, 712–718 (1984).

    Article  CAS  Google Scholar 

  23. Frisch, S.M. & Screaton, R.A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    Article  CAS  Google Scholar 

  24. Buckley, C.D. et al. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397, 534–539 (1999).

    Article  CAS  Google Scholar 

  25. Teesalu, T., Blasi, F. & Talarico, D. Expression and function of the urokinase type plasminogen activator during mouse hemochorial placental development. Dev. Dyn. 213, 27–38 (1998).

    Article  CAS  Google Scholar 

  26. Strickland, S. & Richards, W.G. Invasion of the trophoblasts. Cell 71, 355–357 (1992).

    Article  CAS  Google Scholar 

  27. Hu, Z.Y. et al. Expression of tissue type and urokinase type plasminogen activators as well as plasminogen activator inhibitor type-1 and type-2 in human and rhesus monkey placenta. J. Anat. 194, 183–195 (1999).

    Article  CAS  Google Scholar 

  28. Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  Google Scholar 

  29. Connolly, A.J., Ishihara, H., Kahn, M.L., Farese, R.V. & Coughlin, S.R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  CAS  Google Scholar 

  30. Gu, J.M. et al. Disruption of the endothelial cell protein C receptor gene in mice causes placental thrombosis and early embryonic lethality. J. Biol. Chem. 277, 43335–43343 (2002).

    Article  CAS  Google Scholar 

  31. Crawley, J.T., Gu, J.M., Ferrell, G. & Esmon, C.T. Distribution of endothelial cell protein C/activated protein C receptor (EPCR) during mouse embryo development. Thromb. Haemost. 88, 259–266 (2002).

    Article  CAS  Google Scholar 

  32. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  Google Scholar 

  33. Cross, J.C., Werb, Z. & Fisher, S.J. Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518 (1994).

    Article  CAS  Google Scholar 

  34. Fazel, A. et al. Increase in expression and activity of thrombomodulin in term human syncytiotrophoblast microvilli. Placenta 19, 261–268 (1998).

    Article  CAS  Google Scholar 

  35. Even-Ram, S. et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat. Med. 4, 909–914 (1998).

    Article  CAS  Google Scholar 

  36. Preston, F.E. et al. Increased fetal loss in women with heritable thrombophilia. Lancet 348, 913–916 (1996).

    Article  CAS  Google Scholar 

  37. Greer, I.A. Thrombosis in pregnancy: maternal and fetal issues. Lancet 353, 1258–1265 (1999).

    Article  CAS  Google Scholar 

  38. Kupferminc, M.J. et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N. Engl. J. Med. 340, 9–13 (1999).

    Article  CAS  Google Scholar 

  39. Brenner, B. et al. Thrombophilic polymorphisms are common in women with fetal loss without apparent cause. Thromb. Haemost. 82, 6–9 (1999).

    Article  CAS  Google Scholar 

  40. Blumenfeld, Z. & Brenner, B. Thrombophilia-associated pregnancy wastage. Fertil. Steril. 72, 765–774 (1999).

    Article  CAS  Google Scholar 

  41. Out, H.J., Kooijman, C.D., Bruinse, H.W. & Derksen, R.H. Histopathological findings in placentae from patients with intra-uterine fetal death and anti-phospholipid antibodies. Eur. J. Obstet. Gynecol. Reprod. Biol. 41, 179–186 (1991).

    Article  CAS  Google Scholar 

  42. Isermann, B. et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J. Clin. Invest. 108, 537–546 (2001).

    Article  CAS  Google Scholar 

  43. Gogjian, M.A., Barry, K.J. & Stein, B.M. Measurement of fibrinolytic activity after ε-aminocaproic acid administration in rats (Rattus norvegicus). Lab Anim. Sci. 31, 710–711 (1981).

    CAS  PubMed  Google Scholar 

  44. Braissant, O. & Wahli, W. A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 3, 10–16 (1998).

    Google Scholar 

  45. Rappolee, D.A., Basilico, C., Patel, Y. & Werb, Z. Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development 120, 2259–2269 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant HL-60655, by a grant-in-aid from the American Heart Association to H.W. and by a grant of the Deutsche Forschungsgemeinschaft (IS 67/1-2) to B.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Weiler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isermann, B., Sood, R., Pawlinski, R. et al. The thrombomodulin–protein C system is essential for the maintenance of pregnancy. Nat Med 9, 331–337 (2003). https://doi.org/10.1038/nm825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing