Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease

Abstract

Humans and mice deficient in Fas, a tumor necrosis factor (TNF)-receptor family member, cannot induce apoptosis of autoreactive cells, and consequently develop progressive lymphoproliferative disorders and lupus-like autoimmune diseases. Previous studies have shown that short-term administrations of agonistic monoclonal antibodies against CD137, another TNF-receptor family member, activate T cells and induce rejection of allografts and established tumors. Here we report that treatment with an agonistic monoclonal antibody to CD137 (2A) blocks lymphadenopathy and spontaneous autoimmune diseases in Fas-deficient MRL/lpr mice, ultimately leading to their prolonged survival. Notably, 2A treatment rapidly augments IFN-γ production, and induces the depletion of autoreactive B cells and abnormal double-negative T cells, possibly by increasing their apoptosis through Fas- and TNF receptor–independent mechanisms. This study demonstrates that agonistic monoclonal antibodies specific for costimulatory molecules can be used as novel therapeutic agents to delete autoreactive lymphocytes and block autoimmune disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of 2A treatment on lymphocyte populations and antibody production.
Figure 2: Mechanisms underlying in DNTC and B-cell depletion.
Figure 3: Administration of 2A ameliorates lymphadenopathy in MRL/lpr mice.
Figure 4: 2A administration completely blocks the development of skin lesions.
Figure 5: 2A treatment attenuates renal disease and auto-antibody production, and prolongs survival.
Figure 6: Therapeutic effects of 2A in MRL/lpr mice with advanced disease.

Similar content being viewed by others

References

  1. Theofilopoulos, A.N. & Dixon, F.J. Etiopathogenesis of murine SLE. Immunol. Rev. 55, 179–216 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, P.L. & Eisenberg, R.A. Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Wofsy, D., Hardy, R.R. & Seaman, W.E. The proliferating cells in autoimmune MRL/lpr mice lack L3T4, an antigen on “helper” T cells that is involved in the response to class II major histocompatibility antigens. J. Immunol. 132, 2686–2689 (1984).

    CAS  PubMed  Google Scholar 

  4. Morse, H.C. 3rd et al. Abnormalities induced by the mutant gene Ipr: Expansion of a unique lymphocyte subset. J. Immunol. 129, 2612–2615 (1982).

    PubMed  Google Scholar 

  5. Andrews, B.S. et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J. Exp. Med. 148, 1198–1215 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Kaliyaperumal, A., Michaels, M.A. & Datta, S.K. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: Tolerance spreading impairs pathogenic function of autoimmune T and B cells. J. Immunol. 162, 5775–5783 (1999).

    CAS  PubMed  Google Scholar 

  7. Wofsy, D. Treatment of murine lupus with anti-CD4 monoclonal antibodies. Immunol. Ser. 59, 221–236 (1993).

    CAS  PubMed  Google Scholar 

  8. Mohan, C., Shi, Y., Laman, J.D. & Datta, S.K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–80 (1995).

    CAS  PubMed  Google Scholar 

  9. Finck, B.K., Linsley, P.S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Kalled, S.L., Cutler, A.H., Datta, S.K. & Thomas, D.W. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: Preservation of kidney function. J. Immunol. 160, 2158–2165 (1998).

    CAS  PubMed  Google Scholar 

  11. Liang, B., Kashgarian, M.J., Sharpe, A.H. & Mamula, M.J. Autoantibody responses and pathology regulated by B7-1 and B7-2 costimulation in MRL/lpr lupus. J. Immunol. 165, 3436–3443 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Theofilopoulos, A.N. & Lawson, B.R. Tumour necrosis factor and other cytokines in murine lupus. Ann. Rheum. Dis. 58 Suppl. 1, I49–55 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelley, V.R. & Wuthrich, R.P. Cytokines in the pathogenesis of systemic lupus erythematosus. Semin. Nephrol. 19, 57–66 (1999).

    CAS  PubMed  Google Scholar 

  14. Lawson, B.R. et al. Treatment of murine lupus with cDNA encoding IFN-γR/Fc. J. Clin. Invest. 106, 207–215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vinay, D.S. & Kwon, B.S. Role of 4-1BB in immune responses. Semin. Immunol. 10, 481–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kwon, B., Moon, C.H., Kang, S., Seo, S.K. & Kwon, B.S. 4-1BB: Still in the midst of darkness. Mol. Cells 10, 119–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Pollok, K.E. et al. Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol. 150, 771–781 (1993).

    CAS  PubMed  Google Scholar 

  18. Melero, I., Johnston, J.V., Shufford, W.W., Mittler, R.S. & Chen, L. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol. 190, 167–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Goodwin, R.G. et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol. 23, 2631–2641 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Pollok, K.E. et al. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells. Eur. J. Immunol. 24, 367–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Alderson, M.R. et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur. J. Immunol. 24, 2219–2227 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Shuford, W.W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 186, 47–55 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blazar, B.R. et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft- versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J. Immunol. 166, 3174–3183 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wilcox, R. et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest. 109, 651–659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halstead, E.S., Mueller, Y.M., Altman, J.D. & Katsikis, P.D. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nature Immunol. 3, 536–541 (2002).

    Article  CAS  Google Scholar 

  27. Mittler, R.S., Bailey, T.S., Klussman, K., Trailsmith, M.D. & Hoffmann, M.K. Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J. Exp. Med. 190, 1535–1540 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, Y. et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J. Immunol. 168, 1457–1465 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl. Acad. Sci. USA 90, 1756–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suda, T. & Nagata, S. Why do defects in the Fas-Fas ligand system cause autoimmunity? J. Allergy Clin. Immunol. 100, S97–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Hildeman, D.A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, A.H., Nathan, C.F. & Stuehr, D.J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141, 2407–2412 (1988).

    CAS  PubMed  Google Scholar 

  33. Williams, M.S., Noguchi, S., Henkart, P.A. & Osawa, Y. Nitric oxide synthase plays a signaling role in TCR-triggered apoptotic death. J. Immunol. 161, 6526–6531 (1998).

    CAS  PubMed  Google Scholar 

  34. Haendeler, J., Zeiher, A.M. & Dimmeler, S. Nitric oxide and apoptosis. Vitam. Horm. 57, 49–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Passwell, J., Schreiner, G.F., Nonaka, M., Beuscher, H.U. & Colten, H.R. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J. Clin. Invest. 82, 1676–1684 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoffman, R.W. T cells in the pathogenesis of systemic lupus erythematosus. Front Biosci. 6, D1369–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Jacobson, B.A., Rothstein, T.L. & Marshak-Rothstein, A. Unique site of IgG2a and rheumatoid factor production in MRL/lpr mice. Immunol. Rev. 156, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Peng, S.L., Moslehi, J. & Craft, J. Roles of interferon-γ and interleukin-4 in murine lupus. J. Clin. Invest. 99, 1936–1946 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balomenos, D., Rumold, R. & Theofilopoulos, A.N. Interferon-γ is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J. Clin. Invest. 101, 364–371 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haas, C., Ryffel, B. & Le Hir, M. IFN-γ is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J. Immunol. 158, 5484–5491 (1997).

    CAS  PubMed  Google Scholar 

  41. Schwarting, A., Wada, T., Kinoshita, K., Tesch, G. & Kelley, V.R. IFN-γ receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL- Fas(lpr) mice. J. Immunol. 161, 494–503 (1998).

    CAS  PubMed  Google Scholar 

  42. Nicoletti, F. et al. Dichotomic effects of IFN-γ on the development of systemic lupus erythematosus-like syndrome in MRL-lpr/lpr mice. Eur. J. Immunol. 30, 438–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J. et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J. Clin. Invest. 108, 1771–1780 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was in part supported by NIH grants (HD-37104, DK-20595-25, and DK-58891) and JDFI (1-2000-875). J.C. was in part supported by the Howard Hughes Medical Institute undergraduate summer program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Chen, H., Subudhi, S. et al. Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med 8, 1405–1413 (2002). https://doi.org/10.1038/nm1202-796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1202-796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing