Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers

Abstract

Transformation and cancer growth are regulated by the coordinate actions of oncogenes and tumor suppressors. Here, we show that the novel E3 ubiquitin ligase HACE1 is frequently downregulated in human tumors and maps to a region of chromosome 6q21 implicated in multiple human cancers. Genetic inactivation of HACE1 in mice results in the development of spontaneous, late-onset cancer. A second hit from either environmental triggers or genetic heterozygosity of another tumor suppressor, p53, markedly increased tumor incidence in a Hace1-deficient background. Re-expression of HACE1 in human tumor cells directly abrogates in vitro and in vivo tumor growth, whereas downregulation of HACE1 via siRNA allows non-tumorigenic human cells to form tumors in vivo. Mechanistically, the tumor-suppressor function of HACE1 is dependent on its E3 ligase activity and HACE1 controls adhesion-dependent growth and cell cycle progression during cell stress through degradation of cyclin D1. Thus, HACE1 is a candidate chromosome 6q21 tumor-suppressor gene involved in multiple cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of HACE1 expression by epigenetic modification in human Wilms' tumor.
Figure 2: Reduced HACE1 expression in multiple human tumors and spontaneous tumor formation in Hace1 mutant mice.
Figure 3: Hace1 mutant mice are susceptible to urethane-induced lung cancer.
Figure 4: Cooperativity between p53 and HACE1 in tumor suppression.
Figure 5: HACE1 controls growth and tumorigenesis of transformed human cancer cells.
Figure 6: HACE1 controls anchorage-dependent growth and cyclin D1 expression.
Figure 7: HACE1 modulates cell proliferation pathways via cyclin D1 degradation.

Similar content being viewed by others

References

  1. Thiagalingam, S. et al. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr. Opin. Oncol. 14, 65–72 (2002).

    Article  CAS  Google Scholar 

  2. Hyytinen, E.R. et al. Defining the region(s) of deletion at 6q16–q22 in human prostate cancer. Genes Chromosom. Cancer 34, 306–312 (2002).

    Article  CAS  Google Scholar 

  3. Inoue, M. et al. Chromosome 6 suffers frequent and multiple aberrations in thymoma. Am. J. Pathol. 161, 1507–1513 (2002).

    Article  CAS  Google Scholar 

  4. Orphanos, V. et al. Allelic imbalance of chromosome 6q in ovarian tumors. Br. J. Cancer 71, 666–669 (1995).

    Article  CAS  Google Scholar 

  5. Utada, Y. et al. Mapping of target regions of allelic loss in primary breast cancers to 1-cM intervals on genomic contigs at 6q21 and 6q25.3. Jpn. J. Cancer Res. 91, 293–300 (2000).

    Article  CAS  Google Scholar 

  6. Zhang, Y. et al. A 3-cM commonly deleted region in 6q21 in leukemias and lymphomas delineated by fluorescence in situ hybridization. Genes Chromosom. Cancer 27, 52–58 (2000).

    Article  CAS  Google Scholar 

  7. Morelli, C. et al. Cloning and characterization of the common fragile site FRA6F harboring a replicative senescence gene and frequently deleted in human tumors. Oncogene 21, 7266–7276 (2002).

    Article  CAS  Google Scholar 

  8. Fernandez, C.V., Lestou, V.S., Wildish, J., Lee, C.L. & Sorensen, P.H. Detection of a novel t(6;15)(q21;q21) in a pediatric Wilms' tumor. Cancer Genet. Cytogenet. 129, 165–167 (2001).

    Article  CAS  Google Scholar 

  9. Solis, V., Pritchard, J. & Cowell, J.K. Cytogenetic changes in Wilms' tumors. Cancer Genet. Cytogenet. 34, 223–234 (1988).

    Article  CAS  Google Scholar 

  10. Hoban, P.R. et al. Physical localisation of the breakpoints of a constitutional translocation t(5;6)(q21;q21) in a child with bilateral Wilms' tumor. J. Med. Genet. 34, 343–345 (1997).

    Article  CAS  Google Scholar 

  11. Bruce, C.K., Howard, P., Nowak, N.J. & Hoban, P.R. Molecular analysis of region t(5;6)(q21;q21) in Wilms tumor. Cancer Genet. Cytogenet. 141, 106–113 (2003).

    Article  CAS  Google Scholar 

  12. Anglesio, M.S. et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney. Hum. Mol. Genet. 13, 2061–2074 (2004).

    Article  CAS  Google Scholar 

  13. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  Google Scholar 

  14. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  Google Scholar 

  15. Sharpless, N.E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  Google Scholar 

  16. Sharpless, N.E. et al. p16INK4a and p53 deficiency cooperate in tumorigenesis. Cancer Res. 62, 2761–2765 (2002).

    CAS  PubMed  Google Scholar 

  17. Herzog, C.R., Noh, S., Lantry, L.E., Guan, K.L. & You, M. Cdkn2a encodes functional variation of p16INK4a but not p14ARF, which confers selection in mouse lung tumorigenesis. Mol. Carcinog. 25, 92–98 (1999).

    Article  CAS  Google Scholar 

  18. Jackson, R.J. et al. Loss of the cell cycle inhibitors p21(Cip1) and p27(Kip1) enhances tumorigenesis in knockout mouse models. Oncogene 21, 8486–8497 (2002).

    Article  CAS  Google Scholar 

  19. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  20. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat. Genet. 5, 225–229 (1993).

    Article  CAS  Google Scholar 

  21. Fogh, J., Fogh, J.M. & Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 221–226 (1977).

    Article  CAS  Google Scholar 

  22. Lovvorn, H.N., III, Savani, R.C., Ruchelli, E., Cass, D.L. & Adzick, N.S. Serum hyaluronan and its association with unfavorable histology and aggressiveness of heterotransplanted Wilms' tumor. J. Pediatr. Surg. 35, 1070–1078 (2000).

    Article  Google Scholar 

  23. Bagui, T.K., Mohapatra, S., Haura, E. & Pledger, W.J. P27Kip1 and p21Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol. Cell. Biol. 23, 7285–7290 (2003).

    Article  CAS  Google Scholar 

  24. Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    Article  CAS  Google Scholar 

  25. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  26. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  Google Scholar 

  27. Diehl, J.A. Cycling to cancer with cyclin D1. Cancer Biol. Ther. 1, 226–231 (2002).

    Article  CAS  Google Scholar 

  28. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  Google Scholar 

  29. Bock, C. et al. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21, 4067–4068 (2005).

    Article  CAS  Google Scholar 

  30. Tognon, C.E. et al. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol. Cell. Biol. 18, 6995–7008 (1998).

    Article  CAS  Google Scholar 

  31. Tognon, C. et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    Article  CAS  Google Scholar 

  32. Thomas, N.A., Neville, P.J., Baxter, S.W. & Campbell, I.G. Genetic analysis of benign ovarian tumors. Int. J. Cancer 105, 499–505 (2003).

    Article  CAS  Google Scholar 

  33. Gaidano, G. et al. Deletions involving two distinct regions of 6q in B-cell non-Hodgkin lymphoma. Blood 80, 1781–1787 (1992).

    CAS  PubMed  Google Scholar 

  34. Takeuchi, S. et al. Allelotype analysis in relapsed childhood acute lymphoblastic leukemia. Oncogene 22, 6970–6976 (2003).

    Article  CAS  Google Scholar 

  35. Li, B.C. et al. Allelic loss of chromosome 6q in gastric carcinoma. Diagn. Mol. Pathol. 12, 193–200 (2003).

    Article  CAS  Google Scholar 

  36. Yoon, J. & Ko, Y.H. Deletion mapping of the long arm of chromosome 6 in peripheral T and NK cell lymphomas. Leuk. Lymphoma 44, 2077–2082 (2003).

    Article  CAS  Google Scholar 

  37. Fujii, H., Zhou, W. & Gabrielson, E. Detection of frequent allelic loss of 6q23-q25.2 in microdissected human breast cancer tissues. Genes Chromosom. Cancer 16, 35–39 (1996).

    Article  CAS  Google Scholar 

  38. Fujii, S., Takeshima, Y., Arihiro, K., Kaneko, M. & Inai, K. Microsatellite instability in breast cancers with special reference to patients' age and bilaterality. Hiroshima J. Med. Sci. 47, 89–97 (1998).

    CAS  PubMed  Google Scholar 

  39. Fujii, H. et al. Mucinous cancers have fewer genomic alterations than more common classes of breast cancer. Breast Cancer Res. Treat. 76, 255–260 (2002).

    Article  CAS  Google Scholar 

  40. Trink, B. et al. Absence of TSG101 transcript abnormalities in human cancers. Oncogene 16, 2815–2818 (1998).

    Article  CAS  Google Scholar 

  41. Smeds, J. et al. Ductal carcinoma in situ of the breast with different histopathological grades and corresponding new breast tumor events: analysis of loss of heterozygosity. Acta Oncol. 44, 41–49 (2005).

    Article  Google Scholar 

  42. Yatsuoka, T. et al. Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am. J. Gastroenterol. 95, 2080–2085 (2000).

    Article  CAS  Google Scholar 

  43. Konishi, N. et al. Genetic mapping of allelic loss on chromosome 6q within heterogeneous prostate carcinoma. Cancer Sci. 94, 764–768 (2003).

    Article  CAS  Google Scholar 

  44. Nakamura, M. et al. Novel tumor suppressor loci on 6q22–23 in primary central nervous system lymphomas. Cancer Res. 63, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  45. Barghorn, A. et al. Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am. J. Pathol. 158, 1903–1911 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Grundy and the Children's Oncology Group as well as the Cooperative Human Tissue Network (CHTN) for providing clinical Wilms' tumor samples for this study; A. Brooks-Wilson and M. Marra for HACE1 sequencing assistance; R. Kandel and D. Holmyard for help with electron microscopy of the sarcoma samples; D. Bouchard and N.-J. Chen for assistance with FACS, M. Bowden and M. Gleave for assistance with nude mouse studies; and V. Evdokimova, T. Zoranovic, K. Kuba, N. Joza, A. Oliveira-dos Santos, M. Crackower, I. Kozieradski, T. Nakashima, H. Jones Taggart, M. Cheung, M. Rangachari, Y. Liu, M. Sun and M. Pollard for discussions, technical help and reagents. The GFP-tagged activated Ki-Ras plasmid was provided by R. Kay, Terry Fox Laboratory, British Columbia Cancer Research Centre. This work was supported by the National Cancer Institute of Canada (NCIC) (to P.H.S.), a Canadian Institutes of Health Research (CIHR) post-doctoral fellowship (to F.Z.), the Institute for Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), the Jubilaeumsfonds of the Austrian National Bank, GEN-AU and an EU Excellence grant to J.M.P.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. made Hace1 mutant mice in the laboratory of J.M.P. and later in the laboratory of P.P.L. and analyzed the tumors in vivo with significant help from G.Y., R.S., M.P.N., S.C., H.H., T.W. and P.P.L. M.S.A. performed most of the in vitro cell line experiments, with significant assistance from F.Z., N.M. and L.L. M.O. and P.H.S. are trained pathologists and assessed the tumors histologically. J.F. and R.J.A. did all methylation studies reported in the paper. P.H.S. and J.M.P. supervised and initiated the project from the outset and together wrote the paper.

Corresponding authors

Correspondence to Poul H Sorensen or Josef M Penninger.

Ethics declarations

Competing interests

One coauthor, P.S., has applied for a U.S. patent on the HACE1 protein.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figs. 1–12, Supplementary Table 1 and Supplementary References (PDF 10572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Anglesio, M., O'Sullivan, M. et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med 13, 1060–1069 (2007). https://doi.org/10.1038/nm1621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing