Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skeletal remodeling in health and disease

Abstract

The use of genetically manipulated mouse models, gene and protein discovery and the cataloguing of genetic mutations have each allowed us to obtain new insights into skeletal morphogenesis and remodeling. These techniques have made it possible to identify molecules that are obligatory for specific cellular functions, and to exploit these molecules for therapeutic purposes. New insights into the pathophysiology of diseases have also enabled us to understand molecular defects in a way that was not possible a decade ago. This review summarizes our current understanding of the carefully orchestrated cross-talk between cells of the bone marrow and between bone cells and the brain through which bone is constantly remodeled during adult life. It also highlights molecular aberrations that cause bone cells to become dysfunctional, as well as therapeutic options and opportunities to counteract skeletal loss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse functions and regulation of the osteoblast.
Figure 2: Molecular mechanisms underlying osteoclastogenesis and bone resorption.
Figure 3: Neural and neurohumoral regulation of bone mass.

Similar content being viewed by others

References

  1. Boisvert, C.A. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 438, 1145–1147 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Feng, J.Q. et al. Loss of DMP-1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han, Y., Cowin, S.C., Schaffler, M.B. & Weinbaum, S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Natl. Acad. Sci. USA 101, 16689–16694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bialek, P. et al. A twist code determines the onset of osteoblast differentiation. Dev. Cell 6, 423–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Doecke, J.D. et al. Association of functionally different RUNX2 P2 promoter alleles with BMD. J. Bone Miner. Res. 21, 265–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ermakov, S., Malkin, I., Kobyliansky, E. & Livshits, G. Variation in femoral length is associated with polymorphisms in RUNX2 gene. Bone 38, 199–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, J. et al. The core-binding factor beta subunit is required for bone formation and hematopoetic maturation. Nat. Genet. 32, 645–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Kaneki, H. et al. TNF promotes RUNX2 degradation through up-regulation of SMURF1 and SMURF2 in osteoblasts. J. Biol. Chem. 281, 4326–4333 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11, 880–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, L. et al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl. Acad. Sci. USA 102, 17130–17135 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. et al. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol. 24, 4677–4684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartikka, H. et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J. Bone Miner. Res. 20, 783–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bodine, P.V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222–1237 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Semenov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsuo, K. et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475–26480 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Whyte, M.P. Paget's disease of bone and genetic disorders of RANKL/OPG/NF-kappaB signaling. Ann. NY Acad. Sci. 1068, 143–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Silver, I.A., Murrills, R.J. & Etherington, D.J. Microelectrode studies on acid beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Zaidi, M., Moonga, B.S. & Huang, C.L. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biol. Rev. Camb. Philos. Soc. 79, 79–100 (2004).

    Article  PubMed  Google Scholar 

  27. Moonga, B.S. et al. Ca2+ influx through the osteoclast plasma membrane ryanodine receptor. Am. J. Physiol. Renal Physiol. 282, F921–F932 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Zaidi, M., Datta, H.K., Patchell, A., Moonga, B.S. & MacIntyre, I. 'Calcium-activated' intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem. Biophys. Res. Commun. 163, 1461–1465 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. MacIntyre, I. et al. Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc. Natl. Acad. Sci. USA 88, 2936–2940 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adebanjo, O.A. et al. Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J. Cell Biol. 142, 1347–1356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaidi, M. et al. A ryanodine receptor-like molecule in the osteoclast plasma membrane is a functional component of the osteoclast Ca2+ sensor. J. Clin. Invest. 96, 1582–1590 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, L. et al. Disordered osteoclast formation and function in CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J. 17, 369–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, L. et al. A novel mechanism for coupling intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J. 16, 302–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal, J., Kumar, K., Sun, L. & Zaidi, M. Selective upregulation of ADP-ribosyl cyclases CD38 and CD157 by TNF but not by RANK-L reveals differences in downstream signaling. Am. J. Physiol. Renal Physiol. 291, F557–F566 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Li, C. et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J. Bone Miner. Res. 21, 865–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Zaidi, M. Neural surveillance of skeletal homeostasis. Cell Metab. 1, 219–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoetic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, L., Patel, M.S., Bradley, A., Wagner, E.F. & Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 122, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Qvist, P., Christgau, S., Pedersen, B.J., Schlemmer, A. & Christiansen, C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31, 57–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Zaidi, M. et al. Calcitonin gene-related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif. Tissue Int. 40, 149–154 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Baldock, P.A. et al. Hypothalamic Y2 receptors regulate bone formation. J. Clin. Invest. 109, 915–921 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elefteriou, F., Takeda, S., Liu, X., Armstrong, D. & Karsenty, G. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology 144, 3842–3847 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Mundy, G.R. & Guise, T.R. Hormonal control of calcium homeostasis. Clin. Chem. 45, 1347–1352 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Yakar, S. et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohan, S. & Baylink, D.J. Impaired skeletal growth in mice with haploinsufficiency of IGF-1: genetic evidence that differences in IGF-1 expression could contribute to peak bone mass differences. J. Endocrinol. 185, 415–420 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaidi, M., Sun, L., Davies, T.F. & Abe, E. Low TSH triggers bone loss: fact or fiction? Thyroid 16, 1075–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 175, 151–162 (2003).

    Article  Google Scholar 

  52. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Hase, H. et al. TNFα mediates the skeletal effects of thyroid-stimulating hormone. Proc. Natl. Acad. Sci. USA 103, 12849–12854 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iqbal, J., Sun, L., Kumar, T.R., Blair, H.C. & Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl. Acad. Sci. USA 103, 14925–14930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thorndyke, M.C. & Probert, L. Calcitonin-like cells in the pharynx of the ascidian Styela clava. Cell Tissue Res. 203, 301–309 (1979).

    Article  CAS  PubMed  Google Scholar 

  56. Zaidi, M., Moonga, B.S. & Abe, E. Calcitonin and bone formation: a knockout full of surprises. J. Clin. Invest. 110, 1769–1771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoff, A.O. et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J. Clin. Invest. 110, 1849–1857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dacquin, R. et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J. Cell Biol. 164, 509–514 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Datta, H.K. et al. In vitro and in vivo effects of amylin and amylin-amide on calcium metabolism in the rat and rabbit. Biochem. Biophys. Res. Commun. 162, 876–881 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Christensen, C. Calcitonin in arthritis. Proc. NY Acad. Sci. 2nd Conf. Skeletal Med. Biol. (in the press).

  61. Albright, F., Smith, P.H. & Richardson, A.M. Post-menopausal osteoporosis: its clinical features. J. Am. Med. Assoc. 116, 2465–2474 (1941).

    Article  Google Scholar 

  62. Zaidi, M., Sun, L., Kumar, T.R., Sairam, M.R. & Blair, H.C. Both FSH and sex steroids influence bone mass. Cell 127, 1080–1081 (2006).

    Article  CAS  Google Scholar 

  63. Gao, J. et al. Altered ovarian function affects skeletal homeostasis independent of the action of follicle stimulating hormone. Endocrinology, published online 1 March 2007 (doi: 10.1210/en.2006-1404).

    Article  CAS  PubMed  Google Scholar 

  64. Sims, N.A. et al. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30, 18–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Miyaura, C. et al. Sex- and age-related response to aromatase deficiency in bone. Biochem. Biophys. Res. Commun. 280, 1062–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Devleta, B., Adem, B. & Senada, S. Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J. Bone Miner. Metab. 22, 360–364 (2004).

    Article  PubMed  Google Scholar 

  67. Sowers, M.R. et al. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab. 91, 1261–1267 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, L., Davies, T.F., Blair, H.C., Abe, E. & Zaidi, M. TSH and bone loss. Ann. NY Acad. Sci. 1068, 309–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Bauer, D.C., Ettinger, B., Nevitt, M.C. & Stone, K.L. Study of Osteoporotic Fractures Research Group. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134, 561–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Mazziotti, G. et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J. Bone Miner. Res. 20, 480–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Sampath, T.K. et al. Thyroid stimulating hormone (TSH) restores bone volume, microarchitecture and strength in aged ovariectomized rats. J. Bone Miner. Res., published online 12 March 2007 (doi: 10.1359/jbmr.070302).

    Article  CAS  PubMed  Google Scholar 

  72. Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J. Clin. Invest. 106, 1229–1237 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roggia, C. et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci. USA 98, 13960–13965 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ryan, M.R. et al. An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc. Natl. Acad. Sci. USA 102, 16735–16740 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ritchlin, C.T., Haas-Smith, S.A., Li, P., Hicks, D.G. & Schwarz, E.M. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pazianas, M., Rhim, A.D., Weinberg, A.M., Su, C. & Lichtenstein, G.R. The effect of anti-TNF-alpha therapy on spinal bone mineral density in patients with Crohn's disease. Ann. NY Acad. Sci. 1068, 543–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Schwarz, E.M. et al. Autoimmunity and bone. Ann. NY Acad. Sci. 1068, 275–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Jilka, R.L., Weinstein, R.S., Takahashi, K., Parfitt, A.M. & Manolagas, S.C. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J. Clin. Invest. 97, 1732–1740 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawaguchi, H. et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Invest. 104, 229–237 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, X-B. et al. Impaired osteoblastic differentiation, reduced bone formation and severe osteoporosis in noggin-overexpressing mice. J. Clin. Invest. 112, 924–934 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Epstein, S., Inzerillo, A.M., Caminis, J. & Zaidi, M. Disorders associated with acute rapid and severe bone loss. J. Bone Miner. Res. 18, 2083–2094 (2003).

    Article  PubMed  Google Scholar 

  82. Buchinsky, F.J. et al. T lymphocytes play a critical role in the development of cyclosporin A-induced osteopenia. Endocrinology 137, 2278–2285 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Almeida, M., Han, L., Bellido, T., Manolagas, S.C. & Kousteni, S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J. Biol. Chem. 280, 41342–41351 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, H.J. et al. Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest. 116, 2152–2160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Humphrey, E.L., Williams, J.H., Davie, M.W. & Marshall, M.J. Effects of dissociated glucocorticoids on OPG and RANKL in osteoblastic cells. Bone 38, 652–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Stepnick, L.S. The frequency of bone disease. In Bone Health and Osteoporosis: A Report of the Surgeon General (eds. MacGowan, J.A., Raisz, L.G., Noonan, A.S. & Elderkin, A.L) 68–87 (Office of the U.S. Surgeon General, Washington, DC, 2004).

    Google Scholar 

  88. Siris, E.S. et al. Continuing Outcomes Relevant to Evista (CORE) Investigators. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J. Bone Miner. Res. 20, 1514–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Wu, H. et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Nettles, K.W. & Greene, G.L. Ligand control of co-regulator recruitment to nuclear receptors. Annu. Rev. Physiol. 67, 309–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Das, H., Wang, L., Kamath, A. & Bukowski, J.F. γδT-cell receptor-mediated recognition of aminobisphosphonates. Blood 98, 1616–1618 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lindsay, R. et al. Risk of new vertebral fracture in the year following a fracture. J. Am. Med. Assoc. 285, 320–323 (2001).

    Article  CAS  Google Scholar 

  94. Zaidi, M., Blair, H.C., Moonga, B.S., Abe, E. & Huang, C.L. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J. Bone Miner. Res. 18, 599–609 (2003).

    Article  PubMed  Google Scholar 

  95. Colucci, S. et al. T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction. Blood 104, 3722–3730 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ueland, T. et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 111, 2461–2468 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Jono, S. et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106, 1192–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. McClung, M.R. et al. AMG 162 Bone Loss Study Group. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Bekker, P.J. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 20, 2275–2282 (2005).

    Article  PubMed  Google Scholar 

  101. Schwartzberg, P.L. et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src−/− mutant mice. Genes Dev. 11, 2835–2844 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miyazaki, T. et al. Src kinase activity is essential for osteoclast function. J. Biol. Chem. 279, 17660–17666 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, S.H. et al. v-ATPase V(0) subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Miao, D. et al. Skeletal abnormalities in PTH-null mice are influenced by dietary calcium. Endocrinology 145, 2046–2053 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Miao, D. et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J. Clin. Invest. 115, 2402–2411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmitt, C.P., Homme, M. & Schaefer, F. Structural organization and biological relevance of oscillatory parathyroid hormone secretion. Pediatr. Nephrol. 20, 346–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Kang, S. et al. Wnt signaling stimulates osteoblastogenesis by mesenchymal precursors by suppressing CCAAT/enhancer binding protein α and peroxisome proliferator activator receptor γ. J. Biol. Chem. 282, 14151–14524 (2007).

    Google Scholar 

  108. Towler, D.A., Shao, J.S., Cheng, S.L., Pingsterhaus, J.M. & Loewy, A.P. Osteogenic regulation of vascular calcification. Ann. NY Acad. Sci. 1068, 327–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Glass, D.A. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Kieslinger, M. et al. EBF2 regulates osteoblast-dependent differentiation of osteoclasts. Dev. Cell 9, 757–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Glass, D.A. & Karsenty, G. Canonocal Wnt signaling in osteoblasts is required for osteoclast differentiation. Ann. NY Acad. Sci. 1068, 117–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bauer, D.C. et al. Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch. Intern. Med. 164, 146–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Akiyama, T. et al. Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22, 6653–6664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koga, T. et al. Co-stimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Gohda, J. et al. RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J. 24, 790–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, Y. et al. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor, but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280, 32905–32913 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Asagiri, M. et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261–1269 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Faccio, R. et al. Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Bruzzaniti, A. et al. Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol. Biol. Cell 16, 3301–3313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shore, E.M. et al. A recurrent mutation of BMP type 1 receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry Syndrome. Cell 117, 387–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Tozum, T.F., Oppenlander, M.E., Koch-Paige, A.J., Robins, D.M. & McCauley, L.K. Effects of sex steroid receptor specificity in the regulation of skeletal metabolism. Calcif. Tissue Int. 75, 60–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Bassett, J.H. et al. Thyroid hormone excess rather than TSH deficiency induces osteoporosis in hyperthyroidism. Mol. Endocrinol. 21, 1095–1107 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Jones, D.C., et al. Regulation of adult bone mass by Schnurri-3. Science 312, 1223–1227 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. Iqbal (Medical Scientist Training Program student) for developing the figures, M.J. Sweeney for editorial assistance and L. Sun, B.S. Moonga, E. Abe and H.C. Blair for helpful critiques. I acknowledge the support of the US National Institutes of Health (grants AG14907, DK70526 and AG23176) and Department of Veteran Affairs (Merit Award and Geriatrics Research Education and Clinical Center).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Speaker and lecturer: Alliance for Better Health and Merck.

Ad hoc boards: Roche, GlaxoSmithKline, and Proctor & Gamble.

Research grants to Mount Sinai: Procter & Gamble, Genzyme, and Servier (IRIS, Paris).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, M. Skeletal remodeling in health and disease. Nat Med 13, 791–801 (2007). https://doi.org/10.1038/nm1593

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing