Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histidine button engineered into cardiac troponin I protects the ischemic and failing heart

Abstract

The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cTnI A164H transgene construct and expression, and isometric tension in isolated single mouse cardiac myocytes.
Figure 2: Acidic pH challenge in single intact myocytes and isolated hearts.
Figure 3: In vivo micromanometry measurements under hypoxic and ischemic challenges.
Figure 4: Hemodynamics, arrhythmias and energetics during ischemia and reperfusion in isolated hearts.
Figure 5: Assessment of function in the chronically failing mouse heart in vivo and in human failing cardiac myocytes ex vivo.

Similar content being viewed by others

References

  1. Michaud, C.M., Murray, J.L. & Borton, A.R. Burden of disease—implications for future research. J. Am. Med. Assoc. 285, 535–539 (2001).

    Article  CAS  Google Scholar 

  2. Steg, P.G. et al. Determinants and prognostic impact of heart failure complicating acute coronary syndromes: observations from the Global Registry of Acute Coronary Events (GRACE). Circulation 109, 494–499 (2004).

    Article  Google Scholar 

  3. Deedwania, P.C. The key to unraveling the mystery of mortality in heart failure. Circulation 107, 1719–1721 (2003).

    Article  Google Scholar 

  4. Lee, J.A. & Allen, D.G. Mechanisms of acute ischemic contractile failure of the heart: role of intracellular calcium. J. Clin. Invest. 88, 361–367 (1991).

    Article  CAS  Google Scholar 

  5. Metzger, J.M. & Westfall, M.V. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ. Res. 94, 146–158 (2004).

    Article  CAS  Google Scholar 

  6. Solaro, R.J., Lee, J.A., Kentish, J.C. & Allen, D.G. Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ. Res. 63, 779–787 (1988).

    Article  CAS  Google Scholar 

  7. Westfall, M.V., Rust, E.M. & Metzger, J.M. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl. Acad. Sci. USA 94, 5444–5449 (1997).

    Article  CAS  Google Scholar 

  8. Westfall, M.V., Borton, A.R., Albayya, F. & Metzger, J.M. Specific charge differences in troponin I isoforms influence myofilament calcium sensitivity of tension in adult cardiac myocytes. Biophys. J. 80, 356A (2001).

    Google Scholar 

  9. Dargis, R., Pearlstone, J.R., Barrette-Ng, I., Edwards, H. & Smillie, L.B. Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J. Biol. Chem. 277, 34662–34665 (2002).

    Article  CAS  Google Scholar 

  10. Westfall, M.V., Albayya, F.P., Turner, I.I. & Metzger, J.M. Chimera analysis of troponin I domains that influence Ca2+-activated myofilament tension in adult cardiac myocytes. Circ. Res. 86, 470–477 (2000).

    Article  CAS  Google Scholar 

  11. Robbins, J. Remodeling the cardiac sarcomere using transgenesis. Annu. Rev. Physiol. 62, 261–287 (2000).

    Article  CAS  Google Scholar 

  12. Michele, D.E., Gomez, C.A., Hong, K.E., Westfall, M.V. & Metzger, J.M. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by β-blockade. Circ. Res. 92, 255–262 (2002).

    Article  Google Scholar 

  13. Fentzke, R.C. et al. Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart. J. Physiol. (Lond.) 517, 143–157 (1999).

    Article  CAS  Google Scholar 

  14. Westfall, M.V., Turner, I.I., Albayya, F.P. & Metzger, J.M. Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A. Am. J. Physiol. 280, C324–C332 (2001).

    Article  CAS  Google Scholar 

  15. Jain, M. et al. Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 109, 898–903 (2004).

    Article  CAS  Google Scholar 

  16. Dewald, O. et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc. Natl. Acad. Sci. USA 100, 2700–2705 (2003).

    Article  CAS  Google Scholar 

  17. Sakamoto, J. et al. Reperfusion arrhythmias in the murine heart: their characteristics and alteration after ischemic preconditioning. Basic Res. Cardiol. 94, 489–495 (1999).

    Article  CAS  Google Scholar 

  18. del Monte, F. et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc. Natl. Acad. Sci. USA 101, 5622–5627 (2004).

    Article  CAS  Google Scholar 

  19. Wainwright, C.L., Miller, A.M., Work, L.M. & Del Soldato, P. NCX4016 (NO-aspirin) reduces infarct size and suppresses arrhythmias following myocardial ischaemia/reperfusion in pigs. Br. J. Pharmacol. 135, 1882–1888 (2002).

    Article  CAS  Google Scholar 

  20. Naito, H., Furukawa, Y., Chino, D., Yamada, C. & Hashimoto, K. Effects of zatebradine and propranolol on canine ischemia and reperfusion-induced arrhythmias. Eur. J. Pharmacol. 388, 171–176 (2000).

    Article  CAS  Google Scholar 

  21. Piper, H.M., Meuter, K. & Schafer, C. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg. 75, S644–S648 (2003).

    Article  Google Scholar 

  22. Gould, K. et al. Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am. J. Physiol. 282, H615–H621 (2002).

    CAS  Google Scholar 

  23. Westfall, M.V., Rust, E.M., Albayya, F. & Metzger, J.M. Adenovirus-mediated myofilament gene transfer into adult cardiac myocytes. Methods Cell Biol. 52, 307–322 (1997).

    Article  CAS  Google Scholar 

  24. del Monte, F. et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100, 2308–2311 (1999).

    Article  CAS  Google Scholar 

  25. Rossman, E.I. et al. Abnormal frequency-dependent responses represent the pathophysiologic signature of contractile failure in human myocardium. J. Mol. Cell. Cardiol. 36, 33–42 (2004).

    Article  CAS  Google Scholar 

  26. Takeda, S., Yamashita, A., Maeda, K. & Maeda, Y. Structure of the core domain of human cardiac troponin in the Ca (2+)-saturated form. Nature 424, 35–41 (2003).

    Article  CAS  Google Scholar 

  27. Perutz, M.F., Gronenborn, A.M., Clore, G.M., Fogg, J.H. & Shih, D.T. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of α-helices. J. Mol. Biol. 183, 491–498 (1985).

    Article  CAS  Google Scholar 

  28. Rotzschke, O., Lau, J.M., Hofstatter, M., Falk, K. & Strominger, J.L. A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. Proc. Natl. Acad. Sci. USA 99, 16946–16950 (2002).

    Article  CAS  Google Scholar 

  29. Zong, X., Stieber, J., Ludwig, A., Hofmann, F. & Biel, M. A single histidine residue determines the pH sensitivity of the pacemaker channel HCN2. J. Biol. Chem. 276, 6313–6319 (2001).

    Article  CAS  Google Scholar 

  30. Cave, A.C. et al. ATP synthesis during low flow ischemia: influence of increased glycolytic substrate. Circulation 101, 2090–2096 (2000).

    Article  CAS  Google Scholar 

  31. Cross, H.R., Kranias, E.G., Murphy, E. & Steenbergen, C. Ablation of PLB exacerbates ischemic injury to a lesser extent in female and male mice: protective role of NO. Am. J. Physiol. 284, H683–H690 (2002).

    Google Scholar 

  32. Cross, H.R., Lu, L., Steenbergen, C., Philipson, K.D. & Murphy, E. Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptilibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ. Res. 83, 1215–1223 (1998).

    Article  CAS  Google Scholar 

  33. Mulieri, L.A., Hasenfuss, G., Leavitt, B., Allen, P. & Alpert, N.R. Altered myocardial force-frequency relation in human heart failure. Circulation 85, 1743–1750 (1992).

    Article  CAS  Google Scholar 

  34. Hasenfuss, G. et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ. Res. 75, 434–442 (1994).

    Article  CAS  Google Scholar 

  35. Pieske, B., Maier, L.S., Bers, D.M. & Hasenfuss, G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ. Res. 85, 38–46 (1999).

    Article  CAS  Google Scholar 

  36. del Monte, F., Harding, S.E., Dec, G.W., Gwathmey, J.K. & Hajjar, R.J. Targeting phospholamban by gene transfer in human heart failure. Circulation 105, 904–907 (2002).

    Article  CAS  Google Scholar 

  37. Chaudhary, K.W. et al. Altered myocardial Ca2+ cycling after left ventricular assist device support in the failing human heart. J. Am. Coll. Cardiol. 44, 837–845 (2004).

    Article  CAS  Google Scholar 

  38. Heerdt, P.M. et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102, 2713–2719 (2000).

    Article  CAS  Google Scholar 

  39. Murphy, A.M. et al. Transgenic mouse model of stunned myocardium. Science 287, 488–491 (2000).

    Article  CAS  Google Scholar 

  40. Kimura, A. et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat. Genet. 16, 379–382 (1997).

    Article  CAS  Google Scholar 

  41. Mogensen, J. et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest. 111, 209–216 (2003).

    Article  CAS  Google Scholar 

  42. Westfall, M.V., Borton, A.R., Albayya, F.P. & Metzger, J.M. Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants. Circ. Res. 91, 525–531 (2002).

    Article  CAS  Google Scholar 

  43. Spindler, M. et al. Diastolic dysfunction and altered energetics in the α-MHC 403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  Google Scholar 

  44. Javadpour, M.M., Tardiff, J.C., Pinz, I. & Ingwall, J.S. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J. Clin. Invest. 112, 768–775 (2003).

    Article  CAS  Google Scholar 

  45. Michele, D.E., Albayya, F. & Metzger, J.M. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell Biol. 145, 1483–1495 (1999).

    Article  CAS  Google Scholar 

  46. Coutu, P., Bennett, C.N., Favre, E.G., Day, S.M. & Metzger, J.M. Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked α-tropomyosin mutations. Circ. Res. 94, 1235–1241 (2004).

    Article  CAS  Google Scholar 

  47. Saupe, K.W., Spindler, M., Tian, R. & Ingwall, J.S. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ. Res. 82, 898–907 (1998).

    Article  CAS  Google Scholar 

  48. Szatkowski, M.L. et al. In vivo acceleration of heart relaxation performance by Parvalbumin gene delivery. J. Clin. Invest. 107, 191–198 (2001).

    Article  CAS  Google Scholar 

  49. Mundina-Weilenmann, C., Vittone, L., Cingolani, H.E. & Orchard, C.H. Effects of acidosis on phosphorylation of phospholamban and troponin I in rat cardiac muscle. Am. J. Physiol. 39, C107–C114 (1996).

    Article  Google Scholar 

  50. Tarnavski, O. et al. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol. Genomics 16, 349–360 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Li, A. Lopatin, S. Whitesall, R. Liao, K. Converso, M. Russell, F. Pagani, H. Patel, E. DeVaney, D. Dyke, E. Favre, A. Sober-Rankin, K. Pasyk and S. Forfa for assistance and expertise. This work was supported by grants from the American Heart Association (0475032N to S.M.D.) and the US National Institutes of Health (HL67254 to M.V.W., HL52320 and HL63985 to J.S.I., and HL059301 to J.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M Metzger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Representative tension-pCa relationships in adult single cardiac myocytes expressing cTnI (control), ssTnI or ssTnI H132A. (PDF 770 kb)

Supplementary Fig. 2

Summary of pCa50 in cardiac myocytes after cTnI A164H adenoviral gene transfer in isolated rat cardiac myocytes. (PDF 25 kb)

Supplementary Fig. 3

Confocal imaging of indirect immunofluorescently labeled myocardial cryosections. (PDF 386 kb)

Supplementary Fig. 4

Cell and organ morphometrics, histology and electron microscopy. (PDF 145 kb)

Supplementary Fig. 5

Protein expression in intact hearts. (PDF 54 kb)

Supplementary Fig. 6

Isolated myocyte and heart organ responses to β-adrenergic stimuli. (PDF 605 kb)

Supplementary Fig. 7

Intraventricular pressures during ischemia and reperfusion in isolated mouse hearts from two independent transgenic mouse lines. (PDF 40 kb)

Supplementary Fig. 8

Effects of ischemia and reperfusion in cTnI A164H mice in vivo. (PDF 25 kb)

Supplementary Table 1

Energetic enzyme measurements. (PDF 10 kb)

Supplementary Methods (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, S., Westfall, M., Fomicheva, E. et al. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12, 181–189 (2006). https://doi.org/10.1038/nm1346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing