Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical evidence of efficient tumor targetting based on single–chain Fv antibody selected from a combinatorial library

Abstract

We present a system for cancer targeting based on single–chain Fv (scFv) antibodies selected from combinatorial libraries, produced in bacteria and purified by using an engineered tag. Combinatorial libraries of scFv genes contain great diversity, and scFv antibodies with characteristics optimized for a particular task can be selected from them using filamentous bacteriophage. We illustrate the benefits of this system by imaging patients with carcinoembryonic antigen (CEA)–producing cancers using an iodine–123 labeled scFv anti–CEA selected for high affinity. All known tumor deposits were located, and advantages over current imaging technology are illustrated. ScFvs are produced in a cloned form and can be readily engineered to have localizing and therapeutic functions that will be applicable in cancer and other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chester, K.A. & Hawkins, R.E. Clinical issues in antibody design. Trends Biotechnol. 13, 294–300 (1995).

    Article  CAS  Google Scholar 

  2. Yokota, T., Milenic, D.E., Whitlow, M. & Schlom, J. Rapid tumour penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408 (1992).

    CAS  PubMed  Google Scholar 

  3. Huston, J.S. et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in. Escherichia coll Proc Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  Google Scholar 

  4. Colcher, D. et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl Cancer Inst 82, 1191–1197 (1990).

    Article  CAS  Google Scholar 

  5. Milenic, D.E. et al Construction, binding properties, metabolism, and tumor targeting of a single chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363–6371 (1991).

    CAS  PubMed  Google Scholar 

  6. Savage, P. et al Construction, characterisation and kinetics of a single chain antibody recognising the tumour associated antigen placental alkaline phos-phatase. Br. J. Cancer 68, 738–742 (1993).

    Article  CAS  Google Scholar 

  7. Huse, W.E. et al Generation of a large combinatorial library of the immunolog-ical repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  Google Scholar 

  8. McCafferty, J., Griffiths, A.D., Winter, G. & DJ.Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  9. Clackson, T., Hoogenboom, H.R., Griffiths, A.D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  CAS  Google Scholar 

  10. Hawkins, R.E., Russell, S.J. & Winter, G. Selection of phage antibodies by binding affinity: Mimicking affinity maturation. J. Mol Biol. 226, 889–896 (1992).

    Article  CAS  Google Scholar 

  11. Chester, K.A. et al Phage libraries for generation of clinically useful antibodies. Lancet 343, 455–456 (1994).

    Article  CAS  Google Scholar 

  12. Griffiths, A.D. et al Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBOJ. 13, 3245–3260 (1994).

    Article  CAS  Google Scholar 

  13. Verhaar, M.J. et al A single chain Fv derived from a filamentous phage library has distinct tumour targeting advantages over one derived from a hybridoma. Int.J. Cancer 61, 497–501 (1995).

    Article  CAS  Google Scholar 

  14. Casey, J.L. et al Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol Methods 179, 105–116 (1995).

    Article  CAS  Google Scholar 

  15. Campaign operation manual for control of production, preclinical toxicology and phase I trials of anti tumour antibodies and drug antibody conjugates. Br. J. Cancer 54, 557–568 (1986).

  16. Houghten, R.A. et al Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  Google Scholar 

  17. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  18. Bunin, B.A., Plunket, M.J. & Ellman, J.A. The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. USA 91, 4708–4712 (1994).

    Article  CAS  Google Scholar 

  19. Green, A.J., Dewhurst, S.E., Begent, R.H., Bagshawe, K.D. & Riggs, S.J. Accurate quantification of 131I distribution by gamma camera imaging. Eur. J. Nucl. Med. 16, 361–365 (1990).

    Article  CAS  Google Scholar 

  20. Lane, D.M. et al Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labeled antibody to carcinoembryonic antigen: Phase I/II study with comparative biodistribution of intact and F(ab')2 antibodies. Br. J. Cancer 70, 521–525 (1994).

    Article  CAS  Google Scholar 

  21. Begent, R.H.J. J. etal. Antibody distribution and dosimetry in patients receiving radi-olabelled antibody therapy for colorectal cancer. Br. J. Cancer 60, 406–412 (1989).

    Article  CAS  Google Scholar 

  22. Takakura, Y., Fujita, T., Hashido, M. & Sezoni, H. Disposition characteristics of macromolecules in tumour-bearing mice. Pharm. Res. 7, 339–346 (1990).

    Article  CAS  Google Scholar 

  23. Michael, N.P. et al In vitro and in vivo characterisation of a recombinant car-boxypeptidase G2::anti-CEA scFv fusion protein. Immunotechnology 2, 47–57 (1996).

    Article  CAS  Google Scholar 

  24. Bagshawe, K.D., Sharma, S.K., Springer, C.S. & Antoniw, P. Antibody directed enzyme prodrug therapy: Pilot scale clinical trial. Tumour Target. 1, 17–29 (1995).

    Google Scholar 

  25. Yang, W-P. et al. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV antibody into the picomolar range. J. Mol. Biol. 254, 392–403 (1995).

    Article  CAS  Google Scholar 

  26. Barbas, C.F. III.Synthetic human antibodies. Nature Med. 1, 837–839 (1995).

    Article  CAS  Google Scholar 

  27. Melton, R.G. et al. Optimisation of small-scale coupling of A5B7 monoclonal antibody to carboxypeptidase G2. J. Immunol. Methods 158, 49–56 (1993).

    Article  CAS  Google Scholar 

  28. Moertel, C.G. Chemotherapy for colorectal cancer. N. Engl. J. Med. 330, 1136–1142(1994).

  29. Glimelius, B. B for the Nordic Gastrointestinal Tumour Adjuvant Therapy Group. Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal cancer: A randomized trial. Eur. J. Cancer S82 (Suppl. 2), 462 (1991).

    Google Scholar 

  30. Verhaar, M.J. et al. 99mTc radiolabelling using a phage-derived single chain Fv with C-terminal cysteine for colorectal tumour imaging. J. Nucl. Med. 37, 868–872 (1996).

    CAS  PubMed  Google Scholar 

  31. Begent, R.H.J. et al Cancer Research Campaign operation manual for control recommendations for products derived from recombinant DNA technology prepared for investigational administration to patients with cancer in phase I trials. Eur. J. Cancer 29A, 1907–1910 (1993).

    Article  CAS  Google Scholar 

  32. Hunter, W.M. & Greenwood, F.C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194, 495–496 (1962).

    Article  CAS  Google Scholar 

  33. Ledermann, J.A. et al. A phase-I study of repeated therapy with radiolabelled antibody to carcinoembryonic antigen using intermittent or continuous administration of cyclosporin A to suppress the immune response. Int. J. Cancer 47, 659–664 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begent, R., Verhaar, M., Chester, K. et al. Clinical evidence of efficient tumor targetting based on single–chain Fv antibody selected from a combinatorial library. Nat Med 2, 979–984 (1996). https://doi.org/10.1038/nm0996-979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0996-979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing