Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy

Abstract

Adequate control of HIV requires impairing the infection, replication and spread of the virus, no small task given the extraordinary capacity of HIV to exploit the cell's molecular machinery in the course of infection. Understanding the dynamic interplay of host cell and virus is essential to the effort to eradicate HIV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: A summary of late events in the HIV-infected cell culminating in the assembly of new infectious virions.
Figure 5: Late steps in the assembly of new virions.

Similar content being viewed by others

Linda-Gail Bekker, Chris Beyrer, … Jeffrey V. Lazarus

References

  1. Cohen, O.J. & Fauci, A.S. Current strategies in the treatment of HIV infection. Adv. Intern. Med. 46, 207–246 (2001).

    CAS  PubMed  Google Scholar 

  2. Hazuda, D.J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV- 1 replication in cells. Science 287, 646–650 (2000).

    CAS  PubMed  Google Scholar 

  3. Bieniasz, P.D. & Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 74, 9868–9877 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mariani, R. et al. A block to human immunodeficiency virus type 1 assembly in murine cells. J. Virol. 74, 3859–3870 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garber, M.E. et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12, 3512–3527 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Taube, R., Fujinaga, K., Wimmer, J., Barboric, M. & Peterlin, B.M. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264, 245–253 (1999).

    CAS  PubMed  Google Scholar 

  7. Cullen, B.R. Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203–210 (1998).

    CAS  PubMed  Google Scholar 

  8. Doms, R.W. & Trono, D. The plasma membrane as a combat zone in the HIV battlefield. Genes Dev. 14, 2677–2688 (2000).

    CAS  PubMed  Google Scholar 

  9. Chan, D.C. & Kim, P.S. HIV entry and its inhibition. Cell 93, 681–684 (1998).

    CAS  PubMed  Google Scholar 

  10. Nguyen, D.H. & Hildreth, J.E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Campbell, S.M., Crowe, S.M. & Mak, J. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227 (2001).

    CAS  PubMed  Google Scholar 

  12. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scarlatti, G. et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Med. 3, 1259–1265 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    CAS  PubMed  Google Scholar 

  15. Martinson, J.J., Chapman, N.H., Rees, D.C., Liu, Y.T. & Clegg, J.B. Global distribution of the CCR5 gene 32-basepair deletion. Nature Genet. 16, 100–103 (1997).

    CAS  PubMed  Google Scholar 

  16. Kozak, S.L., Heard, J.M. & Kabat, D. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus. J. Virol. 76, 1802–1815 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H. & Hildreth, J.E. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17, 1009–1019 (2001).

    CAS  PubMed  Google Scholar 

  18. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    CAS  PubMed  Google Scholar 

  19. Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A. & Littman, D.R. DC-SIGN-mediated internalization of HIV is required for trans- enhancement of T cell infection. Immunity 16, 135–144 (2002).

    CAS  PubMed  Google Scholar 

  20. Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    CAS  PubMed  Google Scholar 

  21. Fackler, O.T. & Peterlin, B.M. Endocytic entry of HIV-1. Curr. Biol. 10, 1005–1008 (2000).

    CAS  PubMed  Google Scholar 

  22. Cartier, C. et al. Identification of three major phosphorylation sites within HIV-1 capsid. Role of phosphorylation during the early steps of infection. J. Biol. Chem. 274, 19434–19440 (1999).

    CAS  PubMed  Google Scholar 

  23. Franke, E.K., Yuan, H.E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    CAS  PubMed  Google Scholar 

  24. Schaeffer, E., Geleziunas, R. & Greene, W.C. Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J. Virol. 75, 2993–3000 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohagen, A. & Gabuzda, D. Role of Vif in stability of the human immunodeficiency virus type 1 core. J. Virol. 74, 11055–11066 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, X., Yu, H., Liu, S.H., Brodsky, F.M. & Peterlin, B.M. Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8, 647–656 (1998).

    CAS  PubMed  Google Scholar 

  27. Takeda, M., Pekosz, A., Shuck, K., Pinto, L.H. & Lamb, R.A. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J. Virol. 76, 1391–1399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Karageorgos, L., Li, P. & Burrell, C. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res. Hum. Retroviruses 9, 817–823 (1993).

    CAS  PubMed  Google Scholar 

  29. Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV- 1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113–2125 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Med. 4, 1397–1400 (1998).

    CAS  PubMed  Google Scholar 

  31. Miller, M.D., Farnet, C.M. & Bushman, F.D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71, 5382–5390 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bell, P., Montaner, L.J. & Maul, G.G. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J. Virol. 75, 7683–7691 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Turelli, P. et al. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol. Cell 7, 1245–1254 (2001).

    CAS  PubMed  Google Scholar 

  34. Weinberg, J.B., Matthews, T.J., Cullen, B.R. & Malim, M.H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477–1482 (1991).

    CAS  PubMed  Google Scholar 

  35. Pemberton, L.F., Blobel, G. & Rosenblum, J.S. Transport routes through the nuclear pore complex. Curr. Opin Cell Biol. 10, 392–399 (1998).

    CAS  PubMed  Google Scholar 

  36. Gallay, P., Hope, T., Chin, D. & Trono, D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825–9830 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bukrinsky, M.I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669 (1993).

    CAS  PubMed  Google Scholar 

  38. Heinzinger, N.K. et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311–7315 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185 (2000).

    CAS  PubMed  Google Scholar 

  40. Sherman, M.P., de Noronha, C.M., Heusch, M.I., Greene, S. & Greene, W.C. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J. Virol. 75, 1522–1532 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eckstein, D.A. et al. HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells. J. Exp. Med. 194, 1407–1419 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vodicka, M.A., Koepp, D.M., Silver, P.A. & Emerman, M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12, 175–185 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dupont, S. et al. A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature 402, 681–685 (1999).

    CAS  PubMed  Google Scholar 

  44. Chen, H. & Engelman, A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc. Natl. Acad. Sci. USA 95, 15270–4 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, Y. & Marsh, J.W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293, 1503–1506 (2001).

    CAS  PubMed  Google Scholar 

  46. Li, L. et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter- proximal transcripts. Proc. Natl. Acad. Sci. USA 91, 3862–3866 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jordan, A., Defechereux, P. & Verdin, E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20, 1726–1738 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kao, S.Y., Calman, A.F., Luciw, P.A. & Peterlin, B.M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    CAS  PubMed  Google Scholar 

  50. Jones, K.A. & Peterlin, B.M. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63, 717–743 (1994).

    CAS  PubMed  Google Scholar 

  51. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol 18, 621–663 (2000).

    CAS  PubMed  Google Scholar 

  52. Crabtree, G.R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96, 611–614 (1999).

    CAS  PubMed  Google Scholar 

  53. Barboric, M., Nissen, R.M., Kanazawa, S., Jabrane-Ferrat, N. & Peterlin, B.M. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell 8, 327–337 (2001).

    CAS  PubMed  Google Scholar 

  54. Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H. & Jones, K.A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462 (1998).

    CAS  PubMed  Google Scholar 

  55. Price, D.H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell Biol. 20, 2629–2634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Garber, M.E. et al. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 Tat-P-TEFb complex to TAR RNA. Mol. Cell Biol. 20, 6958–6969 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyClin. T1 kinase to control transcription. Nature 414, 317–322 (2001).

    CAS  PubMed  Google Scholar 

  58. Powell, D.M., Amaral, M.C., Wu, J.Y., Maniatis, T. & Greene, W.C. HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. Proc. Natl. Acad. Sci. USA 94, 973–978 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo, Y., Yu, H. & Peterlin, B.M. Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. J. Virol. 68, 3850–3856 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Malim, M.H. et al. HIV-1 structural gene expression requires. binding of the Rev. trans- activator to its RNA target sequence. Cell 60, 675–683 (1990).

    CAS  PubMed  Google Scholar 

  61. Malim, M.H. & Cullen, B.R. Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol. Cell Biol. 13, 6180–6189 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan, I.H. et al. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. J. Virol. 72, 5820–5830 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Simmons, A., Aluvihare, V. & McMichael, A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777 (2001).

    CAS  PubMed  Google Scholar 

  64. Glushakova, S. et al. CD4 down-modulation by human immunodeficiency virus type 1 Nef correlates with the efficiency of viral replication and with CD4(+) T– cell depletion in human lymphoid tissue ex vivo. J. Virol. 75, 10113–10117 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lama, J., Mangasarian, A. & Trono, D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr. Biol. 9, 622–631 (1999).

    CAS  PubMed  Google Scholar 

  66. Zheng, Y.H., Plemenitas, A., Linnemann, T., Fackler, O.T. & Peterlin, B.M. Nef increases infectivity of HIV via lipid rafts. Curr. Biol. 11, 875–879 (2001).

    CAS  PubMed  Google Scholar 

  67. Geyer, M., Fackler, O.T. & Peterlin, B.M. Structure–function relationships in HIV-1 Nef. EMBO Rep. 2, 580–585 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, J.K., Kiyokawa, E., Verdin, E. & Trono, D. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl. Acad. Sci. USA 97, 394–399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, B.K., Gandhi, R.T. & Baltimore, D. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J. Virol. 70, 6044–6053 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Crise, B., Buonocore, L. & Rose, J.K. CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J. Virol. 64, 5585–5593 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Margottin, F. et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    CAS  PubMed  Google Scholar 

  72. Xu, X.N. et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J. Exp. Med. 189, 1489–1496 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    CAS  PubMed  Google Scholar 

  74. Le Gall, S. et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8, 483–495 (1998).

    CAS  PubMed  Google Scholar 

  75. Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W.C. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838 (2001).

    CAS  PubMed  Google Scholar 

  76. Wolf, D. et al. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad- phosphorylation to induce anti-apoptotic signals. Nature Med. 7, 1217–1224 (2001).

    CAS  PubMed  Google Scholar 

  77. Greenway, A.L. et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J. Virol. 76, 2692–2702 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jowett, J.B. et al. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J. Virol. 69, 6304–6313 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Goh, W.C. et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nature Med. 4, 65–71 (1998).

    CAS  PubMed  Google Scholar 

  80. de Noronha, C.M. et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294, 1105–1108 (2001).

    CAS  PubMed  Google Scholar 

  81. Freed, E.O. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251, 1–15 (1998).

    CAS  PubMed  Google Scholar 

  82. Wilk, T. et al. Organization of immature human immunodeficiency virus type 1. J. Virol. 75, 759–771 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zimmerman, C. et al. Identification of a host protein essential for assembly of immature HIV- 1 capsids. Nature 415, 88–92 (2002).

    CAS  PubMed  Google Scholar 

  84. Gottlinger, H.G., Sodroski, J.G. & Haseltine, W.A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86, 5781–5785 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ono, A. & Freed, E.O. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 98, 13925–13930 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Garnier, L., Parent, L.J., Rovinski, B., Cao, S.X. & Wills, J.W. Identification of retroviral late domains as determinants of particle size. J. Virol. 73, 2309–2320 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Strack, B., Calistri, A., Accola, M.A., Palu, G. & Gottlinger, H.G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA 97, 13063–13068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    CAS  PubMed  Google Scholar 

  89. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  91. Finkel, T.H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995).

    CAS  PubMed  Google Scholar 

  92. Kowalski, M. et al. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237, 1351–1355 (1987).

    CAS  PubMed  Google Scholar 

  93. Westendorp, M.O. et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497–500 (1995).

    CAS  PubMed  Google Scholar 

  94. Baur, A.S. et al. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1, 373–384 (1994).

    CAS  PubMed  Google Scholar 

  95. Stewart, S.A., Poon, B., Jowett, J.B. & Chen, I.S. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J. Virol. 71, 5579–5592 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Somasundaran, M. & Robinson, H.L. Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection. Science 242, 1554–1557 (1988).

    CAS  PubMed  Google Scholar 

  97. Hanna, Z. et al. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95, 163–175 (1998).

    CAS  PubMed  Google Scholar 

  98. Chao, S.H. et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275, 28345–28348 (2000).

    CAS  PubMed  Google Scholar 

  99. Lind, K.E., Du, Z., Fujinaga, K., Peterlin, B.M. & James, T.L. Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem. Biol. 9, 185–193 (2002).

    CAS  PubMed  Google Scholar 

  100. Wolff, B., Sanglier, J.J. & Wang, Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo- cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 4, 139–147 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.C.W. Carroll for graphic arts; J. Sodroski and members of our laboratories for helpful comments on the manuscript. W.C.G. thanks the Gladstone Institutes, National Institutes of Health (P01 HD40543, R01AI45234, R01 CA86814 and P30MH59037), the University-wide AIDS Research Program (C99-SF-002), and the J.B. Pendleton Trust for funding support. B.M.P. thanks the National Institutes of Health (R01AI38532, R01AI46967, R01AI49104 and R01A151165-01) and University of California University-wide AIDS Research Program (R00-SF-006) for funding support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, W., Peterlin, B. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat Med 8, 673–680 (2002). https://doi.org/10.1038/nm0702-673

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0702-673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing