Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS

Subjects

Abstract

The defective generation or function of regulatory T (Treg) cells in autoimmune disease contributes to chronic inflammation and tissue injury. We report the identification of FoxA1 as a transcription factor in T cells that, after ectopic expression, confers suppressive properties in a newly identified Treg cell population, herein called FoxA1+ Treg cells. FoxA1 bound to the Pdl1 promoter, inducing programmed cell death ligand 1 (Pd-l1) expression, which was essential for the FoxA1+ Treg cells to kill activated T cells. FoxA1+ Treg cells develop primarily in the central nervous system in response to autoimmune inflammation, have a distinct transcriptional profile and are CD4+FoxA1+CD47+CD69+PD-L1hiFoxP3. Adoptive transfer of stable FoxA1+ Treg cells inhibited experimental autoimmune encephalomyelitis in a FoxA1–and Pd-l1–dependent manner. The development of FoxA1+ Treg cells is induced by interferon-β (IFN-β) and requires T cell–intrinsic IFN-α/β receptor (Ifnar) signaling, as the frequency of FoxA1+ Treg cells was reduced in Ifnb−/− and Ifnar−/− mice. In individuals with relapsing-remitting multiple sclerosis, clinical response to treatment with IFN-β was associated with an increased frequency of suppressive FoxA1+ Treg cells in the blood. These findings suggest that FoxA1 is a lineage-specification factor that is induced by IFN-β and supports the differentiation and suppressive function of FoxA1+ Treg cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD4hiPd-l1hi T cells are absent in the inflamed CNS of Ifnb−/− mice.
Figure 2: FoxA1+ Treg cells have a distinct transcriptional profile and suppress skin and CNS inflammation.
Figure 3: FoxA1+ Treg cells are induced by IFN-β.
Figure 4: FoxA1 is essential for the development and function of suppressive FoxA1+ Treg cells.
Figure 5: Ectopic FoxA1 expression generates suppressive FoxA1+ Treg cells that induce activated T cell apoptosis.
Figure 6: IFN-β responsiveness in patients with RRMS is associated with increased numbers of suppressive FoxA1+ Treg cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Josefowicz, S.Z., Lu, L.F. & Rudensky, A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sundrud, M.S. & Nolan, M.A. Synergistic and combinatorial control of T cell activation and differentiation by transcription factors. Curr. Opin. Immunol. 22, 286–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Yamane, H. & Paul, W.E. Early signaling events that underlie fate decisions of naive CD4+ T cells toward distinct T-helper cell subsets. Immunol. Rev. 252, 12–23 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bach, J.F. Autoimmune diseases as the loss of active “self-control”. Ann. NY Acad. Sci. 998, 161–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Himmel, M.E., Yao, Y., Orban, P.C., Steiner, T.S. & Levings, M.K. Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 136, 115–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar, V., Stellrecht, K. & Sercarz, E. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE). J. Exp. Med. 184, 1609–1617 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y., Teige, I., Birnir, B. & Issazadeh-Navikas, S. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat. Med. 12, 518–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominguez-Villar, M., Baecher-Allan, C.M. & Hafler, D.A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Astier, A.L., Meiffren, G., Freeman, S. & Hafler, D.A. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Invest. 116, 3252–3257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Andrés, C. et al. Interferon β-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 182, 204–211 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Teige, I. et al. IFN-β gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J. Immunol. 170, 4776–4784 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y., Teige, I., Ericsson, I., Navikas, V. & Issazadeh-Navikas, S. Suppression of EAE by oral tolerance is independent of endogenous IFN-β whereas treatment with recombinant IFN-β ameliorates EAE. Immunol. Cell Biol. 88, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Teige, I., Liu, Y. & Issazadeh-Navikas, S. IFN-β inhibits T cell activation capacity of central nervous system APCs. J. Immunol. 177, 3542–3553 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D. & Carroll, J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet. 43, 27–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Taube, J.H., Allton, K., Duncan, S.A., Shen, L. & Barton, M.C. Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. J. Biol. Chem. 285, 16135–16144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laganière, J. et al. Location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl. Acad. Sci. USA 102, 11651–11656 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, Z. et al. Foxa1 and Foxa2 regulate bile duct development in mice. J. Clin. Invest. 119, 1537–1545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Motallebipour, M. et al. Differential binding and co-binding pattern of FOXA1 and FOXA3 and their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq. Genome Biol. 10, R129 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kaestner, K.H. The FoxA factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 20, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernardo, G.M. & Keri, R.A. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci. Rep. 32, 113–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lucchinetti, C.F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freeman, G.J., Wherry, E.J., Ahmed, R. & Sharpe, A.H. Reinvigorating exhausted HIV-specific T cells via PD-1–PD-1 ligand blockade. J. Exp. Med. 203, 2223–2227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. et al. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci. 33, 14231–14245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hill, J.A. et al. Foxp3 transcription-factor–dependent and –independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Samstein, R.M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu, W. et al. A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nat. Immunol. 13, 972–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haribhai, D. et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J. Immunol. 182, 3461–3468 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Jain, J. et al. Normal peripheral T-cell function in c-Fos–deficient mice. Mol. Cell Biol. 14, 1566–1574 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. André, S., Tough, D.F., Lacroix-Desmazes, S., Kaveri, S.V. & Bayry, J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am. J. Pathol. 174, 1575–1587 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Porrini, A.M., De Luca, G., Gambi, D. & Reder, A.T. Effects of an anti–IL-10 monoclonal antibody on rIFNβ-1b–mediated immune modulation. Relevance to multiple sclerosis. J. Neuroimmunol. 81, 109–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, X. et al. IFN-β1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J. Immunol. 182, 3928–3936 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hesse, D. et al. Disease protection and interleukin-10 induction by endogenous interferon-β in multiple sclerosis? Eur. J. Neurol. 18, 266–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H. & Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Qian, X., Samadani, U., Porcella, A. & Costa, R.H. Decreased expression of hepatocyte nuclear factor 3α during the acute-phase response influences transthyretin gene transcription. Mol. Cell. Biol. 15, 1364–1376 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Río, J. et al. Defining the response to interferon-β in relapsing-remitting multiple sclerosis patients. Ann. Neurol. 59, 344–352 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27, 313–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kondo, A. et al. Interferon-γ and tumor necrosis factor-α induce an immunoinhibitory molecule, B7-H1, via nuclear factor-κB activation in blasts in myelodysplastic syndromes. Blood 116, 1124–1131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Latchman, Y.E. et al. PD-L1–deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. USA 101, 10691–10696 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandner, S.E. et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J. Immunol. 174, 3408–3415 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Keir, M.E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francisco, L.M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collison, L.W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Collison, L.W. et al. IL-35–mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jozwik, K.M. & Carroll, J.S. Pioneer factors in hormone-dependent cancers. Nat. Rev. Cancer 12, 381–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Nakshatri, H. & Badve, S. FOXA1 in breast cancer. Expert Rev. Mol. Med. 11, e8 (2009).

    Article  PubMed  Google Scholar 

  53. Wölfle, S.J. et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 41, 413–424 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Frank, S.R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carlsson, R., Thorell, K., Liberg, D. & Leanderson, T. SPI-C and STAT6 can cooperate to stimulate IgE germline transcription. Biochem. Biophys. Res. Commun. 344, 1155–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Lublin, F.D. & Reingold, S.C. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46, 907–911 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Lundbeck Foundation in Denmark, The Danish Multiple Sclerosis Society, The Danish Council for Independent Research–Medical Sciences, The Danish Cancer Society, The Swedish Research Council–Medicine and the Bibi and Nils Jensen Foundation to S.I.-N. We thank H. Wekerle, U. Grohmann and M. Prinz for valuable discussion and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed experiments, analyzed and prepared data for presentation and contributed to the writing of the manuscript. R.C. performed experiments and analyzed data and contributed to the writing of the manuscript. J.W., M.K., B.C., M.H. and X.W. performed experiments. M.K., B.C., M.H., X.W., M.C., X.M., M.H.D., F.S. and P.S.S. contributed to collection of patients' blood and clinical studies. K.H. contributed to discussions and final revision of the manuscript. S.I.-N. planned the study design, supervised the overall project, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Shohreh Issazadeh-Navikas.

Ethics declarations

Competing interests

The University of Copenhagen holds the rights to a submitted patent application in which S.I.-N., Y.L. and R.C. are the co-inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–11 and Supplementary Methods (PDF 3306 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Carlsson, R., Comabella, M. et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 20, 272–282 (2014). https://doi.org/10.1038/nm.3485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing