Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Chaperone-assisted protein folding: the path to discovery from a personal perspective

Subjects

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Art Horwich (right) and I (left) in March 1991 taking a walk near my parents' village in the northern part of the Black Forest.
Figure 2: Averaged electron microscopic images.
Figure 3: The current model for protein folding in the GroEL-GroES chaperonin cage.
Figure 4: Model from 1993 for the pathway of chaperone-assisted protein folding in the E. coli cytosol, shown for a GroEL-dependent protein (reproduced from ref. 25).

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Schleyer, M. & Neupert, W. Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. Cell 43, 339–350 (1985).

    Article  CAS  Google Scholar 

  3. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precusor protein into mitochondria. Nature 322, 228–232 (1986).

    Article  CAS  Google Scholar 

  4. Chirico, W.J., Waters, M.G. & Blobel, G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332, 805–810 (1988).

    Article  CAS  Google Scholar 

  5. Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A. & Schekman, R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800–805 (1988).

    Article  CAS  Google Scholar 

  6. Tissières, A., Mitchell, H.K. & Tracy, U.M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 85, 389–398 (1974).

    Article  Google Scholar 

  7. Pelham, H.R.B. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961 (1986).

    Article  CAS  Google Scholar 

  8. Pollock, R.A. et al. The processing peptidase of yeast mitochondria: The two co-operating components MPP and PEP are structurally related. EMBO J. 7, 3493–3500 (1988).

    Article  CAS  Google Scholar 

  9. Cheng, M.Y. et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  CAS  Google Scholar 

  10. Hartl, F.U., Schmidt, B., Wachter, E., Weiss, H. & Neupert, W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47, 939–951 (1986).

    Article  CAS  Google Scholar 

  11. McMullin, T.W. & Hallberg, R.L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell. Biol. 8, 371–380 (1988).

    Article  CAS  Google Scholar 

  12. Hemmingsen, S.M. et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334 (1988).

    Article  CAS  Google Scholar 

  13. Ellis, J. Proteins as molecular chaperones. Nature 328, 378–379 (1987).

    Article  CAS  Google Scholar 

  14. Georgopoulos, C.P., Hendrix, R.W., Casjens, S.R. & Kaiser, A.D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 45–60 (1973).

    Article  CAS  Google Scholar 

  15. Sternberg, N. Properties of a mutant of Escherichia coli defective in bacteriophage l head formation (groE). J. Mol. Biol. 76, 25–44 (1973).

    Article  CAS  Google Scholar 

  16. Coppo, A., Manzi, A., Pulitzer, J.F. & Takahashi, H. Abortive bacteriophage T4 head assembly in mutants of Escherichia coli. J. Mol. Biol. 76, 61–87 (1973).

    Article  CAS  Google Scholar 

  17. Barraclough, R. & Ellis, R.J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 19–31 (1980).

    Article  CAS  Google Scholar 

  18. Ostermann, J., Horwich, A.L., Neupert, W. & Hartl, F.U. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341, 125–130 (1989).

    Article  CAS  Google Scholar 

  19. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889 (1989).

    Article  CAS  Google Scholar 

  20. Martin, J. et al. Chaperonin-mediated protein folding at the surface of GroEL through a 'molten globule'-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  21. Creighton, T.E. Molecular chaperones. Unfolding protein folding. Nature 352, 17–18 (1991).

    Article  CAS  Google Scholar 

  22. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  23. Braig, K., Simon, M., Furuya, F., Hainfeld, J.F. & Horwich, A.L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc. Natl. Acad. Sci. USA 90, 3978–3982 (1993).

    Article  CAS  Google Scholar 

  24. Martin, J., Mayhew, M., Langer, T. & Hartl, F.U. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366, 228–233 (1993).

    Article  CAS  Google Scholar 

  25. Martin, J. & Hartl, F.U. Protein folding in the cell: Molecular chaperones pave the way. Structure 1, 161–164 (1993).

    Article  CAS  Google Scholar 

  26. Ellis, R.J. Molecular chaperones. Opening and closing the Anfinsen cage. Curr. Biol. 4, 633–635 (1994).

    Article  CAS  Google Scholar 

  27. Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1994).

    Article  CAS  Google Scholar 

  28. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  29. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  30. Lorimer, G.H. GroEL structure: A new chapter on assisted folding. Structure 2, 1125–1128 (1994).

    Article  CAS  Google Scholar 

  31. Chen, S. et al. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264 (1994).

    Article  CAS  Google Scholar 

  32. Mayhew, M. et al. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379, 420–426 (1996).

    Article  CAS  Google Scholar 

  33. Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. & Horwich, A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  34. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995).

    Article  CAS  Google Scholar 

  35. Rye, H.S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

    Article  CAS  Google Scholar 

  36. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  37. Mayhew, M. & Hartl, F.U. Lord of the rings: GroES structure. Science 271, 161–162 (1996).

    Article  CAS  Google Scholar 

  38. Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. The GroES and GroEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379–1385 (1989).

    Article  CAS  Google Scholar 

  39. Ewalt, K.L., Hendrick, J.P., Houry, W.A. & Hartl, F.U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

    Article  CAS  Google Scholar 

  40. Houry, W.A., Frishman, D., Eckerskorn, C., Lottspeich, F. & Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

    Article  CAS  Google Scholar 

  41. Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  Google Scholar 

  42. Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T. & Taguchi, H. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29, 1552–1564 (2010).

    Article  CAS  Google Scholar 

  43. Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    Article  CAS  Google Scholar 

  44. Flynn, G.C., Chappell, T.G. & Rothman, J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385–390 (1989).

    Article  CAS  Google Scholar 

  45. Beckmann, R.P., Mizzen, L.E. & Welch, W.J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854 (1990).

    Article  CAS  Google Scholar 

  46. Langer, T. et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689 (1992).

    Article  CAS  Google Scholar 

  47. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  48. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  CAS  Google Scholar 

  49. Teter, S.A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765 (1999).

    Article  CAS  Google Scholar 

  50. Schröder, H., Langer, T., Hartl, F.U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993).

    Article  Google Scholar 

  51. Szabo, A. et al. The ATP hydrolysis–dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  52. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    Article  CAS  Google Scholar 

  53. Frydman, J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778 (1992).

    Article  CAS  Google Scholar 

  54. Netzer, W.J. & Hartl, F.U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997).

    Article  CAS  Google Scholar 

  55. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  56. Morimoto, R.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008).

    Article  CAS  Google Scholar 

  57. Sharma, S. et al. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142–153 (2008).

    Article  CAS  Google Scholar 

  58. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I had the privilege to work with many young scientists who deserve my deeply felt gratitude. I apologize to those whose contributions could not be discussed here. I am especially grateful to Manajit, my wife and colleague, who has contributed tremendously to our work and who shares my excitement for science. I thank my mentors and advisors for continued support and guidance, especially W. Neupert, as well as W. Just, H. Schimassek, W. Wickner and J. Rothman. I would also like to thank all our colleagues in New York City, especially those at Memorial Sloan-Kettering, for welcoming us so warmly into their community and making our years in the Big Apple such a fantastic experience. Finally, I would like to thank the chaperone research community for more than 20 years of collegial support and for the many friendships that have evolved. I acknowledge generous research support from the Max Planck Society, the Deutsche Forschungsgemeinschaft, the European Union, the Howard Hughes Medical Institute, the US National Institutes of Health and the Memorial Sloan-Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ulrich Hartl.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartl, F. Chaperone-assisted protein folding: the path to discovery from a personal perspective. Nat Med 17, 1206–1210 (2011). https://doi.org/10.1038/nm.2467

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing