Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDR3 loop flexibility contributes to the degeneracy of TCR recognition

Abstract

T cell receptor (TCR) binding degeneracy lies at the heart of several physiological and pathological phenomena, yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and an octapeptide (VSV8) bound to the H-2Kb major histocompatibility complex molecule at a 2.7 Å resolution, and compared it with the BM3.3 TCR bound to the H-2Kb molecule loaded with a peptide that has no primary sequence identity with VSV8. Comparison of these structures showed that the BM3.3 TCR complementarity-determining region (CDR) 3α could undergo rearrangements to adapt to structurally different peptide residues. Therefore, CDR3 loop flexibility helps explain TCR binding cross-reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Affinity of BM3.3 TCR binding to the VSV8-H-2Kb ligand.
Figure 2: Relative orientation of the BM3.3 CDRs when docked on the VSV8-H-2Kb or on the pBM1-H-2Kb ligand.
Figure 3: Superimposition of the pBM1 and VSV8 peptides in the H-2Kb groove.
Figure 4: Views of pBM1 and VSV8 peptide read-out by the BM3.3 TCR.
Figure 5: Footprint of BM3.3 TCR on the pBM1-H-2Kb and VSV8-H-2Kb surfaces.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  2. Arstila, T.P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  Google Scholar 

  3. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  Google Scholar 

  4. Bongrand, P. & Malissen, B. Quantitative aspects of T-cell recognition: from within the antigen-presenting cell to within the T cell. Bioessays 20, 412–422 (1998).

    Article  CAS  Google Scholar 

  5. Eisen, H.N. Specificity and degeneracy in antigen recognition: yin and yang in the immune system. Annu. Rev. Immunol. 19, 1–21 (2001).

    Article  CAS  Google Scholar 

  6. Langman, R.E. The specificity of immunological reactions. Mol. Immunol. 37, 555–561 (2000).

    Article  CAS  Google Scholar 

  7. Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  8. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat. Immunol. 2, 797–801 (2001).

    Article  CAS  Google Scholar 

  9. Brehm, M.A. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627–634 (2002).

    Article  CAS  Google Scholar 

  10. Wucherpfennig, K.W. & Strominger, J.L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  Google Scholar 

  11. Evavold, B.D., Sloan-Lancaster, J., Wilson, K.J., Rothbard, J.B. & Allen, P.M. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 2, 655–663 (1995).

    Article  CAS  Google Scholar 

  12. Lang, H.L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    Article  CAS  Google Scholar 

  13. Luz, J.G. et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(β) interactions. J. Exp. Med. 195, 1175–1186 (2002).

    Article  CAS  Google Scholar 

  14. Hennecke, J. & Wiley, D.C. Structure of a complex of the human α/β T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J. Exp. Med. 195, 571–581 (2002).

    Article  CAS  Google Scholar 

  15. Ding, Y.H., Baker, B.M., Garboczi, D.N., Biddison, W.E. & Wiley, D.C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    Article  CAS  Google Scholar 

  16. Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

    Article  CAS  Google Scholar 

  17. Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    Article  CAS  Google Scholar 

  18. Guimezanes, A. et al. Identification of endogenous peptides recognized by in vivo or in vitro generated alloreactive cytotoxic T lymphocytes: distinct characteristics correlated with CD8 dependence. Eur. J. Immunol. 31, 421–432 (2001).

    Article  CAS  Google Scholar 

  19. Guimezanes, A., Schumacher, T.N., Ploegh, H.L. & Schmitt-Verhulst, A.M. A viral peptide can mimic an endogenous peptide for allorecognition of a major histocompatibility complex class I product. Eur. J. Immunol. 22, 1651–1654 (1992).

    Article  CAS  Google Scholar 

  20. Reiser, J.-B. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1, 291–297 (2000).

    Article  CAS  Google Scholar 

  21. Fremont, D.H., Matsumura, M., Stura, E.A., Peterson, P.A. & Wilson, I.A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257, 919–927 (1992).

    Article  CAS  Google Scholar 

  22. Zhang, W., Young, A.C., Imarai, M., Nathenson, S.G. & Sacchettini, J.C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. Proc. Natl. Acad. Sci. USA 89, 8403–8407 (1992).

    Article  CAS  Google Scholar 

  23. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    Article  CAS  Google Scholar 

  24. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  25. Garcia, K.C. et al. An αβ T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  26. Lee, P.U., Churchill, H.R., Daniels, M., Jameson, S.C. & Kranz, D.M. Role of 2CT cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J. Exp. Med. 191, 1355–1364 (2000).

    Article  CAS  Google Scholar 

  27. Madden, D.R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622 (1995).

    Article  CAS  Google Scholar 

  28. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  Google Scholar 

  29. Ding, Y.H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    Article  CAS  Google Scholar 

  30. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  Google Scholar 

  31. Hennecke, J., Carfi, A. & Wiley, D.C. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624 (2000).

    Article  CAS  Google Scholar 

  32. Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  Google Scholar 

  33. Guimezanes, A., Montero-Julian, F. & Schmitt-Verhulst, A.-M. Unique structural features of a strong agonist permit co-receptor independence of an alloreactive TCR.

  34. Kersh, G.J. et al. Structural and functional consequences of altering a peptide MHC anchor residue. J. Immunol. 166, 3345–3354 (2001).

    Article  CAS  Google Scholar 

  35. Smith, K.J., Pyrdol, J., Gauthier, L., Wiley, D.C. & Wucherpfennig, K.W. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J. Exp. Med. 188, 1511–1520 (1998).

    Article  CAS  Google Scholar 

  36. Wells, J.A. & de Vos, A.M. Hematopoietic receptor complexes. Annu. Rev. Biochem. 65, 609–634 (1996).

    Article  CAS  Google Scholar 

  37. Radaev, S., Rostro, B., Brooks, A.G., Colonna, M. & Sun, P.D. Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15, 1039–1049 (2001).

    Article  CAS  Google Scholar 

  38. Keitel, T. et al. Crystallographic analysis of anti-p24 (HIV-1) monoclonal antibody cross-reactivity and polyspecificity. Cell 91, 811–820 (1997).

    Article  CAS  Google Scholar 

  39. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997).

    Article  CAS  Google Scholar 

  40. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  41. Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2, 962–970 (2001).

    Article  CAS  Google Scholar 

  42. Grégoire, C., Malissen, B. & Mazza, G. Characterization of T cell receptor single-chain Fv fragments secreted by myeloma cells. Eur. J. Immunol. 26, 2410–2416 (1996).

    Article  Google Scholar 

  43. O'Callaghan, C.A. et al. BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal. Biochem. 266, 9–15 (1999).

    Article  CAS  Google Scholar 

  44. Wyer, J.R. et al. T cell receptor and coreceptor CD8 αα bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    Article  CAS  Google Scholar 

  45. Wlodawer, A. & Hodgson, K.O. Crystallisation and crystal data of monellin. Proc. Natl. Acad. Sci. USA 72, 398–399 (1975).

    Article  CAS  Google Scholar 

  46. Leslie, A.G.W. in Crystallographic Computing (eds. Moras, D., Podjany, A.D. & Thierry, J.C.) 50–60 (Oxford University Press, Oxford, 1991).

    Google Scholar 

  47. Collaborative Computational Project Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  50. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  51. Hubbard, S.J. & Thornton, J.P. “NACCESS” Computer program (Department of Biochemistry and Molecular Biology, University College London, London, UK, 1993).

    Google Scholar 

  52. Satow, Y., Cohen, G.H., Padlan, E.A. & Davies, D.R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J. Mol. Biol. 190, 593–604 (1986).

    Article  CAS  Google Scholar 

  53. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  54. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  55. Merrit, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Guimezanes, A.-M. Schmitt-Verhulst, C. Kellenberger, L. Leserman and P. Golstein for discussions and comments on the manuscript, and C. Rieckel (beamline ID13), J.L. Ferrer (beamline FIP-BM30A), S. Arzt (beamline ID14-eh1), W. Burmeister (beamline ID14-eh3) and J. Lescar (beamline ID14-eh4) for help with synchrotron data collections at the ESRF (Grenoble). This work was supported by institutional grants from CNRS, CEA and INSERM, and specific grants from ARC, CNRS (programme PCV) and the European Communities (project EPI-PEP-VAC QLK2-CT-2002-00620). P.A.v.d.M. and A.K. are supported by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominique Housset or Bernard Malissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiser, JB., Darnault, C., Grégoire, C. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat Immunol 4, 241–247 (2003). https://doi.org/10.1038/ni891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing