Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

'Tuning' of type I interferon–induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages

Abstract

Immunoreceptor tyrosine-based activation motif (ITAM)–coupled receptors modulate the amplitude and nature of macrophage responses to Toll-like receptor and cytokine receptor stimulation. However, the molecular mechanisms enabling this receptor crosstalk are not known. Here we investigated the function of the calcium-dependent kinases CaMK and Pyk2 'downstream' of ITAM-associated receptors in the regulation of cytokine-induced activation of Jak kinases and STAT transcription factors. CaMK and Pyk2 relayed signals from integrins and the ITAM-containing adaptor DAP12 to augment interleukin 10– and interferon-α-induced Jak activation and STAT1-dependent gene expression. CaMK inhibition suppressed STAT1-mediated interferon-α signaling in a mouse model of systemic lupus erythematosus. Our results associate Pyk2 and Jak kinases with the linkage of signals emanating from cytokine and heterologous ITAM-dependent receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaMK regulates IFN-α-induced serine and tyrosine phosphorylation of STAT1.
Figure 2: STAT1 activation and downstream gene expression 'preferentially' depend on CaMK.
Figure 3: CaMK regulation of STAT1 tyrosine phosphorylation is mediated by Pyk2.
Figure 4: Calcium signaling and Pyk2 regulate Jak1 activation.
Figure 5: Cell attachment and DAP12 regulate interferon responses.
Figure 6: Regulation of interferon signaling by calcium pathways in mouse systemic lupus erythematosus.

Similar content being viewed by others

References

  1. Hamerman, J.A. & Lanier, L.L. Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006, re1 (2006).

  2. Turnbull, I.R. & Colonna, M. Activating and inhibitory functions of DAP12. Nat. Rev. Immunol. 7, 155–161 (2007).

    Article  CAS  Google Scholar 

  3. Underhill, D.M. & Goodridge, H.S. The many faces of ITAMs. Trends Immunol. 28, 66–73 (2007).

    Article  CAS  Google Scholar 

  4. Asagiri, M. & Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 40, 251–264 (2007).

    Article  CAS  Google Scholar 

  5. Hu, X., Chen, J., Wang, L. & Ivashkiv, L.B. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukoc. Biol. 82, 237–243 (2007).

    Article  CAS  Google Scholar 

  6. Tassiulas, I. et al. Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nat. Immunol. 5, 1181–1189 (2004).

    Article  CAS  Google Scholar 

  7. Abtahian, F. et al. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol. Cell. Biol. 26, 6936–6949 (2006).

    Article  CAS  Google Scholar 

  8. Mocsai, A. et al. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 7, 1326–1333 (2006).

    Article  CAS  Google Scholar 

  9. Zou, W. et al. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877–888 (2007).

    Article  CAS  Google Scholar 

  10. Bouchon, A., Facchetti, F., Weigand, M.A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Article  CAS  Google Scholar 

  11. Turnbull, I.R. et al. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J. Exp. Med. 202, 363–369 (2005).

    Article  CAS  Google Scholar 

  12. Hamerman, J.A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  Google Scholar 

  13. Turnbull, I.R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 (2006).

    Article  CAS  Google Scholar 

  14. Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγITAM. Immunity 22, 31–42 (2005).

    CAS  PubMed  Google Scholar 

  15. Levy, D.E. & Darnell, J.E., Jr. STATs: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  16. Nair, J.S. et al. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-γ. Proc. Natl. Acad. Sci. USA 99, 5971–5976 (2002).

    Article  CAS  Google Scholar 

  17. Zhang, X., Blenis, J., Li, H.C., Schindler, C. & Chen-Kiang, S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 267, 1990–1994 (1995).

    Article  CAS  Google Scholar 

  18. van Boxel-Dezaire, A.H., Rani, M.R. & Stark, G.R. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25, 361–372 (2006).

    Article  CAS  Google Scholar 

  19. Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  Google Scholar 

  20. Hook, S.S. & Means, A.R. Ca2+/CaM-dependent kinases: from activation to function. Annu. Rev. Pharmacol. Toxicol. 41, 471–505 (2001).

    Article  CAS  Google Scholar 

  21. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  Google Scholar 

  22. Ho, H.H. & Ivashkiv, L.B. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111–14118 (2006).

    Article  CAS  Google Scholar 

  23. Avraham, H., Park, S.Y., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal. 12, 123–133 (2000).

    Article  CAS  Google Scholar 

  24. Benbernou, N., Muegge, K. & Durum, S.K. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Rα. J. Biol. Chem. 275, 7060–7065 (2000).

    Article  CAS  Google Scholar 

  25. Lev, S. et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745 (1995).

    Article  CAS  Google Scholar 

  26. Miyazaki, T. et al. Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev. 12, 770–775 (1998).

    Article  CAS  Google Scholar 

  27. Takaoka, A. et al. Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-γ, but not IFN-α, signaling. EMBO J. 18, 2480–2488 (1999).

    Article  CAS  Google Scholar 

  28. Li, X., Hunter, D., Morris, J., Haskill, J.S. & Earp, H.S. A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal. J. Biol. Chem. 273, 9361–9364 (1998).

    Article  CAS  Google Scholar 

  29. Okigaki, M. et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc. Natl. Acad. Sci. USA 100, 10740–10745 (2003).

    Article  CAS  Google Scholar 

  30. Sanjay, A. et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181–195 (2001).

    Article  CAS  Google Scholar 

  31. Briscoe, J. et al. Kinase-negative mutants of JAK1 can sustain interferon-γ-inducible gene expression but not an antiviral state. EMBO J. 15, 799–809 (1996).

    Article  CAS  Google Scholar 

  32. Gauzzi, M.C. et al. Interferon-α-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 271, 20494–20500 (1996).

    Article  CAS  Google Scholar 

  33. Li, X., Leung, S., Kerr, I.M. & Stark, G.R. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol. Cell. Biol. 17, 2048–2056 (1997).

    Article  CAS  Google Scholar 

  34. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  35. Healy, J.I. et al. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 6, 419–428 (1997).

    Article  CAS  Google Scholar 

  36. Mocsai, A., Zhou, M., Meng, F., Tybulewicz, V.L. & Lowell, C.A. Syk is required for integrin signaling in neutrophils. Immunity 16, 547–558 (2002).

    Article  CAS  Google Scholar 

  37. Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  Google Scholar 

  38. Andreev, J. et al. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J. Biol. Chem. 276, 20130–20135 (2001).

    Article  CAS  Google Scholar 

  39. Fischer, O.M., Hart, S., Gschwind, A. & Ullrich, A. EGFR signal transactivation in cancer cells. Biochem. Soc. Trans. 31, 1203–1208 (2003).

    Article  CAS  Google Scholar 

  40. Baccala, R., Hoebe, K., Kono, D.H., Beutler, B. & Theofilopoulos, A.N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    Article  CAS  Google Scholar 

  41. Ivashkiv, L.B. Type I interferon modulation of cellular responses to cytokines and infectious pathogens: potential role in SLE pathogenesis. Autoimmunity 36, 473–479 (2003).

    Article  CAS  Google Scholar 

  42. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  Google Scholar 

  43. Fan, R.S., Jacamo, R.O., Jiang, X., Sinnett-Smith, J. & Rozengurt, E. G protein-coupled receptor activation rapidly stimulates focal adhesion kinase phosphorylation at Ser-843. Mediation by Ca2+, calmodulin, and Ca2+/calmodulin-dependent kinase II. J. Biol. Chem. 280, 24212–24220 (2005).

    Article  CAS  Google Scholar 

  44. Ginnan, R. & Singer, H.A. CaM kinase II-dependent activation of tyrosine kinases and ERK1/2 in vascular smooth muscle. Am. J. Physiol. Cell Physiol. 282, C754–C761 (2002).

    Article  CAS  Google Scholar 

  45. Han, H., Fuortes, M. & Nathan, C. Critical role of the carboxyl terminus of proline-rich tyrosine kinase (Pyk2) in the activation of human neutrophils by tumor necrosis factor: separation of signals for the respiratory burst and degranulation. J. Exp. Med. 197, 63–75 (2003).

    Article  CAS  Google Scholar 

  46. Shi, C.S. & Kehrl, J.H. Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation. J. Biol. Chem. 279, 17224–17231 (2004).

    Article  CAS  Google Scholar 

  47. Du, Z. et al. Selective regulation of IL-10 signaling and function by zymosan. J. Immunol. 176, 4785–4792 (2006).

    Article  CAS  Google Scholar 

  48. Ji, J.D. et al. Inhibition of interleukin 10 signaling after Fc receptor ligation and during rheumatoid arthritis. J. Exp. Med. 197, 1573–1583 (2003).

    Article  CAS  Google Scholar 

  49. Dhodapkar, K.M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

    Article  CAS  Google Scholar 

  50. Miyazaki, T. et al. Src kinase activity is essential for osteoclast function. J. Biol. Chem. 279, 17660–17666 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Tybulewicz (National Institute for Medical Research, London) for heterozygous Syk-deficient mice; T. Chatila (University of California at Los Angeles) for CaMKIV-deficient bone marrow; R. Silver for help with calcium flux experiments; J. Hamerman for discussions; X. Hu for critically reviewing the manuscript; and L. Kellerman, B. Bertucci and E. Barreda for technical support. Supported by the National Institutes of Health (L.B.I.; and AR 051448, AR 051886 and P50 AR 054086 to J.S.) and the Abbott Scholar Program (I.T.).

Author information

Authors and Affiliations

Authors

Contributions

L.W. designed and did experiments and wrote the manuscript; I.T. designed and did experiments; K.-H.P.-M. and A.C.R. did experiments; H.G.-H. did experiments and provided reagents; J.S. and R.B. provided reagents; J.J.Z. did the mouse B cell experiments; and L.B.I. designed and supervised research and wrote the manuscript.

Corresponding author

Correspondence to Lionel B Ivashkiv.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-7 (PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Tassiulas, I., Park-Min, KH. et al. 'Tuning' of type I interferon–induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat Immunol 9, 186–193 (2008). https://doi.org/10.1038/ni1548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing