Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases

Abstract

Although understanding of the function and specificity of many natural killer (NK) cell receptors is increasing, the molecular mechanisms regulating their expression during late development of NK cells remain unclear. Here we use representational difference analysis to identify molecules required for late NK cell differentiation. Axl protein tyrosine kinase, together with the structurally related receptors Tyro3 and Mer, were essential for NK cell functional maturation and normal expression of inhibitory and activating NK cell receptors. Also, all three receptors were expressed in maturing NK cells, the ligands of these receptors were produced by bone marrow stromal cells, and recombinant versions of these ligands drove NK cell differentiation in vitro. These results collectively suggest that Axl, Tyro3 and Mer transmit signals that are essential for the generation of a functional NK cell repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic and functional characterization of NK clones.
Figure 2: Expression of Tyro3 receptors on NK cells and Tyro3 ligands on bone marrow stromal cells.
Figure 3: Impaired function of NK cells lacking Tyro3 receptors.
Figure 4: Tyro3 receptors in late differentiation of bone marrow and splenic NK cells.
Figure 5: Impaired maturation of NK cells lacking all three Tyro3 receptors.
Figure 6: Cell-autonomous defect of NK cells lacking Tyro3 receptors.
Figure 7: Interaction of Tyro3 receptors with their ligands induces NK cell differentiation in vitro.

Similar content being viewed by others

References

  1. Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  Google Scholar 

  2. Iizuka, K., Naidenko, O.V., Plougastel, B.F., Fremont, D.H. & Yokoyama, W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 4, 801–807 (2003).

    Article  CAS  Google Scholar 

  3. Carlyle, J.R. et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA 101, 3527–3532 (2004).

    Article  CAS  Google Scholar 

  4. McNerney, M.E., Guzior, D. & Kumar, V. 2B4 (CD244) - CD48 interactions provide a novel MHC class I-independent system for NK cell self-tolerance in mice. Blood 106, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  5. Cerwenka, A. & Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  Google Scholar 

  6. Diefenbach, A. & Raulet, D.H. The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev. 188, 9–21 (2002).

    Article  CAS  Google Scholar 

  7. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  Google Scholar 

  8. Lian, R.H. & Kumar, V. Murine natural killer cell progenitors and their requirements for development. Semin. Immunol. 14, 453–460 (2002).

    Article  CAS  Google Scholar 

  9. Lian, R.H. et al. Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. J. Immunol. 168, 4980–4987 (2002).

    Article  CAS  Google Scholar 

  10. Dorfman, J.R. & Raulet, D.H. Acquisition of Ly49 receptor expression by developing natural killer cells. J. Exp. Med. 187, 609–618 (1998).

    Article  CAS  Google Scholar 

  11. Sivakumar, P.V. et al. Cutting edge: expression of functional CD94/NKG2A inhibitory receptors on fetal NK1.1+Ly-49 cells: a possible mechanism of tolerance during NK cell development. J. Immunol. 162, 6976–6980 (1999).

    CAS  PubMed  Google Scholar 

  12. Van Beneden, K. et al. Expression of Ly49E and CD94/NKG2 on fetal and adult NK cells. J. Immunol. 166, 4302–4311 (2001).

    Article  CAS  Google Scholar 

  13. Sivakumar, P.V., Bennett, M. & Kumar, V. Fetal and neonatal NK1.1+Ly-49 cells can distinguish between major histocompatibility complex class Ihi and class Ilo target cells: evidence for a Ly-49-independent negative signaling receptor. Eur. J. Immunol. 27, 3100–3104 (1997).

    Article  CAS  Google Scholar 

  14. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    Article  Google Scholar 

  15. Toomey, J.A. et al. Stochastic acquisition of Qa1 receptors during the development of fetal NK cells in vitro accounts in part but not in whole for the ability of these cells to distinguish between class I-sufficient and class I-deficient targets. J. Immunol. 163, 3176–3184 (1999).

    CAS  PubMed  Google Scholar 

  16. Williams, N.S. et al. Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J. Immunol. 163, 2648–2656 (1999).

    CAS  PubMed  Google Scholar 

  17. Roth, C., Carlyle, J.R., Takizawa, H. & Raulet, D.H. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13, 143–153 (2000).

    Article  CAS  Google Scholar 

  18. Williams, N.S., Kubota, A., Bennett, M., Kumar, V. & Takei, F. Clonal analysis of NK cell development from bone marrow progenitors in vitro: orderly acquisition of receptor gene expression. Eur. J. Immunol. 30, 2074–2082 (2000).

    Article  CAS  Google Scholar 

  19. Diefenbach, A. et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat. Immunol. 3, 1142–1149 (2002).

    Article  CAS  Google Scholar 

  20. Gilfillan, S., Ho, E.L., Cella, M., Yokoyama, W.M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 3, 1150–1155 (2002).

    Article  CAS  Google Scholar 

  21. Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991).

    Article  CAS  Google Scholar 

  22. Lai, C., Gore, M. & Lemke, G. Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene 9, 2567–2578 (1994).

    CAS  PubMed  Google Scholar 

  23. Graham, D.K., Dawson, T.L., Mullaney, D.L., Snodgrass, H.R. & Earp, H.S. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ. 5, 647–657 (1994).

    CAS  PubMed  Google Scholar 

  24. Stitt, T.N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661–670 (1995).

    Article  CAS  Google Scholar 

  25. Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999).

    Article  CAS  Google Scholar 

  26. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001).

    Article  CAS  Google Scholar 

  27. Dormady, S.P., Zhang, X.M. & Basch, R.S. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6). Proc. Natl. Acad. Sci. USA 97, 12260–12265 (2000).

    Article  CAS  Google Scholar 

  28. Goruppi, S., Chiaruttini, C., Ruaro, M.E., Varnum, B. & Schneider, C. Gas6 induces growth, β-catenin stabilization, and T-cell factor transcriptional activation in contact-inhibited C57 mammary cells. Mol. Cell. Biol. 21, 902–915 (2001).

    Article  CAS  Google Scholar 

  29. Held, W., Kunz, B., Lowin-Kropf, B., van de Wetering, M. & Clevers, H. Clonal acquisition of the Ly49A NK cell receptor is dependent on the trans-acting factor TCF-1. Immunity 11, 433–442 (1999).

    Article  CAS  Google Scholar 

  30. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–869 (2001).

    Article  CAS  Google Scholar 

  31. Behrens, E.M. et al. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur. J. Immunol. 33, 2160–2167 (2003).

    Article  CAS  Google Scholar 

  32. Brown, M.G. et al. Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes. Immunogenetics 53, 584–591 (2001).

    Article  CAS  Google Scholar 

  33. Arase, N. et al. Association with FcRγ is essential for activation signal through NKR-P1 (CD161) in natural killer (NK) cells and NK1.1+ T cells. J. Exp. Med. 186, 1957–1963 (1997).

    Article  CAS  Google Scholar 

  34. Lauwerys, B.R., Garot, N., Renauld, J.C. & Houssiau, F.A. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J. Immunol. 165, 1847–1853 (2000).

    Article  CAS  Google Scholar 

  35. Ortaldo, J.R. & Young, H.A. Mouse Ly49 NK receptors: balancing activation and inhibition. Mol. Immunol. 42, 445–450 (2005).

    Article  CAS  Google Scholar 

  36. Di Santo, J.P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).

    Article  CAS  Google Scholar 

  37. Kunz, B. & Held, W. Positive and negative roles of the trans-acting T cell factor-1 for the acquisition of distinct Ly-49 MHC class I receptors by NK cells. J. Immunol. 166, 6181–6187 (2001).

    Article  CAS  Google Scholar 

  38. Lan, Z. et al. Transforming activity of receptor tyrosine kinase tyro3 is mediated, at least in part, by the PI3 kinase-signaling pathway. Blood 95, 633–638 (2000).

    CAS  PubMed  Google Scholar 

  39. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  Google Scholar 

  40. Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat. Immunol. 1, 419–425 (2000).

    Article  CAS  Google Scholar 

  41. Billadeau, D.D., Upshaw, J.L., Schoon, R.A., Dick, C.J. & Leibson, P.J. NKG2D–DAP10 triggers human NK cell–mediated killing via a Syk-independent regulatory pathway. Nat. Immunol. 4, 557–564 (2003).

    Article  CAS  Google Scholar 

  42. Lian, R.H. et al. A role for lymphotoxin in the acquisition of Ly49 receptors during NK cell development. Eur. J. Immunol. 34, 2699–2707 (2004).

    Article  CAS  Google Scholar 

  43. Fernandez, N.C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    Article  CAS  Google Scholar 

  44. Fernandez, N.C. et al. Dendritic cells (DC) promote natural killer (NK) cell functions: dynamics of the human DC/NK cell cross talk. Eur. Cytokine Netw. 13, 17–27 (2002).

    CAS  PubMed  Google Scholar 

  45. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  Google Scholar 

  46. Granucci, F. et al. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J. Exp. Med. 200, 287–295 (2004).

    Article  CAS  Google Scholar 

  47. Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  Google Scholar 

  48. Tanamachi, D.M., Hanke, T., Takizawa, H., Jamieson, A.M. & Raulet, D.R. Expression of natural killer receptor alleles at different Ly49 loci occurs independently and is regulated by major histocompatibility complex class I molecules. J. Exp. Med. 193, 307–315 (2001).

    Article  CAS  Google Scholar 

  49. Vance, R.E., Jamieson, A.M. & Raulet, D.H. Recognition of the class Ib molecule Qa-1b by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J. Exp. Med. 190, 1801–1812 (1999).

    Article  CAS  Google Scholar 

  50. Jamieson, A.M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

    Article  CAS  Google Scholar 

  51. Hubank, M. & Schatz, D.G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648 (1994).

    Article  CAS  Google Scholar 

  52. Jordan, M., Schallhorn, A. & Wurm, F.M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Gresh for advice in preparing the differential library; J. Hash for genotyping of knockout mice and wild-type littermates; and F. Lemonnier and A. Cumano for discussions. Supported by the Pasteur Institute, the Salk Institute, the Ligue Nationale contre le Cancer and the Lupus Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.C. did the representational difference analysis; Q.L. collaborated in the analysis of wild-type and knockout mice; N.F., S.R. and J.P.D. participated in critical revision of the paper; D.H.R. participated in study design and contributed to writing of the manuscript; G.L. maintained the allelic series of Tyro3, Axl and Mertk mouse mutants and contributed to writing of the manuscript; and C.R. designed and conceptualized the research, analyzed data and wrote the manuscript.

Note: Supplementary information is available on the Nature Immunology website.

Corresponding author

Correspondence to Claude Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Impaired NK repertoire in mice lacking all three Tyro 3 receptors. (PDF 125 kb)

Supplementary Table 1

Primer sequences used to detect transcripts for NK cell receptors, adaptors and effector molecules in NK clones. (PDF 76 kb)

Supplementary Table 2

Primer sequences used to detect transcripts for NK cell receptors, adaptors, effector molecules, transcription factors, Tyro 3 receptors and ligands in NK cells and BM stromal cells. (PDF 77 kb)

Supplementary Table 3

Expression of Ly49 receptors by colonies derived from wild-type or Tyro3−/−Axl−/−Mertk−/− c-Kit+ Sca2+ Lin precursor cells at limiting dilution on OP9 stroma and 3T3 fibroblasts expressing Gas6 and Protein S. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caraux, A., Lu, Q., Fernandez, N. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol 7, 747–754 (2006). https://doi.org/10.1038/ni1353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing