Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for a major histocompatibility complex class Ib–restricted T cell response

Abstract

In contrast to antigen-specific immunity orchestrated by major histocompatibility complex (MHC) class Ia molecules, the ancestrally related nonclassical MHC class Ib molecules generally mediate innate immune responses. Here we have demonstrated the structural basis by which the MHC class Ib molecule HLA-E mediates an adaptive MHC-restricted cytotoxic T lymphocyte response to human cytomegalovirus. Highly constrained by host genetics, the response showed notable fine specificity for position 8 of the viral peptide, which is the sole discriminator of self versus nonself. Despite the evolutionary divergence of MHC class Ia and class Ib molecules, the structure of the T cell receptor–MHC class Ib complex was very similar to that of conventional T cell receptor–MHC class Ia complexes. These results emphasize the evolutionary 'ambiguity' of HLA-E, which not only interacts with innate immune receptors but also has the functional capacity to mediate virus-specific cytotoxic T lymphocyte responses during adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow cytometry of CMV-specific cells from the CMV-seronegative donor RC (HLA-A2,HLA-A29, HLA-B44, HLA-B51 and HLA-Cw7) and the CMV-seropositive donor KK (HLA-A2, HLA-B44 and HLA-Cw7).
Figure 2: Low-affinity interaction between HLA-E–(VMAPRTLIL) and the TCR.
Figure 3: The KK50.4 TCR–HLA-E–(VMAPRTLIL) complex.
Figure 4: Contribution of CDRs to the 'footprint' of the KK50.4 TCR on HLA-E–(VMAPRTLIL).
Figure 5: KK50.4 TCR–peptide interactions are dominated by the Vβ loops.
Figure 6: Residues unique to HLA-E form the basis of the restriction of KK50.4 to HLA-E.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wong, P. & Pamer, E.G. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 21, 29–70 (2003).

    Article  CAS  Google Scholar 

  2. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  Google Scholar 

  3. Adams, E.J. & Parham, P. Species-specific evolution of MHC class I genes in the higher primates. Immunol. Rev. 183, 41–64 (2001).

    Article  CAS  Google Scholar 

  4. Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    Article  CAS  Google Scholar 

  5. Ely, L.K., Kjer-Nielsen, L., McCluskey, J. & Rossjohn, J. Structural studies on the alphabeta T-cell receptor. IUBMB Life 57, 575–582 (2005).

    Article  CAS  Google Scholar 

  6. Potter, T.A., Rajan, T.V., Dick, R.F., II & Bluestone, J.A. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature 337, 73–75 (1989).

    Article  CAS  Google Scholar 

  7. Borrego, F., Ulbrecht, M., Weiss, E.H., Coligan, J.E. & Brooks, A.G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    Article  CAS  Google Scholar 

  8. Braud, V.M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  Google Scholar 

  9. Carretero, M. et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur. J. Immunol. 28, 1280–1291 (1998).

    Article  CAS  Google Scholar 

  10. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl. Acad. Sci. USA 95, 5199–5204 (1998).

    Article  CAS  Google Scholar 

  11. Koller, B.H., Geraghty, D.E., Shimizu, Y., DeMars, R. & Orr, H.T. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J. Immunol. 141, 897–904 (1988).

    CAS  PubMed  Google Scholar 

  12. Lee, N., Goodlett, D.R., Ishitani, A., Marquardt, H. & Geraghty, D.E. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J. Immunol. 160, 4951–4960 (1998).

    CAS  PubMed  Google Scholar 

  13. Braud, V.M., Allan, D.S., Wilson, D. & McMichael, A.J. TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr. Biol. 8, 1–10 (1998).

    Article  CAS  Google Scholar 

  14. Jones, T.R. et al. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl. Acad. Sci. USA 93, 11327–11333 (1996).

    Article  CAS  Google Scholar 

  15. Wiertz, E.J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  Google Scholar 

  16. Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article  CAS  Google Scholar 

  17. Lopez-Botet, M., Angulo, A. & Guma, M. Natural killer cell receptors for major histocompatibility complex class I and related molecules in cytomegalovirus infection. Tissue Antigens 63, 195–203 (2004).

    Article  CAS  Google Scholar 

  18. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031–1033 (2000).

    Article  CAS  Google Scholar 

  19. Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article  CAS  Google Scholar 

  20. Cerboni, C. et al. Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur. J. Immunol. 31, 2926–2935 (2001).

    Article  CAS  Google Scholar 

  21. Pietra, G. et al. The analysis of the natural killer-like activity of human cytolytic T lymphocytes revealed HLA-E as a novel target for TCR α/β-mediated recognition. Eur. J. Immunol. 31, 3687–3693 (2001).

    Article  CAS  Google Scholar 

  22. Salerno-Goncalves, R., Fernandez-Vina, M., Lewinsohn, D.M. & Sztein, M.B. Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J. Immunol. 173, 5852–5862 (2004).

    Article  CAS  Google Scholar 

  23. Heinzel, A.S. et al. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J. Exp. Med. 196, 1473–1481 (2002).

    Article  CAS  Google Scholar 

  24. Pietra, G. et al. HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA 100, 10896–10901 (2003).

    Article  CAS  Google Scholar 

  25. Davis, M.M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  Google Scholar 

  26. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  27. Ely, L.K. et al. Antagonism of antiviral and allogeneic activity of a human public CTL clonotype by a single altered peptide ligand: implications for allograft rejection. J. Immunol. 174, 5593–5601 (2005).

    Article  CAS  Google Scholar 

  28. Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

    Article  CAS  Google Scholar 

  29. O'Callaghan, C.A. et al. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol. Cell 1, 531–541 (1998).

    Article  CAS  Google Scholar 

  30. Strong, R.K. et al. HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J. Biol. Chem. 278, 5082–5090 (2003).

    Article  CAS  Google Scholar 

  31. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  Google Scholar 

  32. Romagnani, C. et al. HLA-E-restricted recognition of human cytomegalovirus by a subset of cytolytic T lymphocytes. Hum. Immunol. 65, 437–445 (2004).

    Article  CAS  Google Scholar 

  33. Clements, C.S. et al. Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc. Natl. Acad. Sci. USA 102, 3360–3365 (2005).

    Article  CAS  Google Scholar 

  34. Moretta, A. et al. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 14, 619–648 (1996).

    Article  CAS  Google Scholar 

  35. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    Article  CAS  Google Scholar 

  36. Mingari, M.C. et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc. Natl. Acad. Sci. USA 93, 12433–12438 (1996).

    Article  CAS  Google Scholar 

  37. Lazetic, S., Chang, C., Houchins, J.P., Lanier, L.L. & Phillips, J.H. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J. Immunol. 157, 4741–4745 (1996).

    CAS  PubMed  Google Scholar 

  38. Kaiser, B.K. et al. Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics. J. Immunol. 174, 2878–2884 (2005).

    Article  CAS  Google Scholar 

  39. Wada, H., Matsumoto, N., Maenaka, K., Suzuki, K. & Yamamoto, K. The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur. J. Immunol. 34, 81–90 (2004).

    Article  CAS  Google Scholar 

  40. Miller, J.D. et al. Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J. Immunol. 171, 1369–1375 (2003).

    Article  CAS  Google Scholar 

  41. Romagnani, C. et al. Identification of HLA-E-specific alloreactive T lymphocytes: a cell subset that undergoes preferential expansion in mixed lymphocyte culture and displays a broad cytolytic activity against allogeneic cells. Proc. Natl. Acad. Sci. USA 99, 11328–11333 (2002).

    Article  CAS  Google Scholar 

  42. Borg, N.A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  Google Scholar 

  43. Baker, B.M., Turner, R.V., Gagnon, S.J., Wiley, D.C. & Biddison, W.E. Identification of a crucial energetic footprint on the alpha1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T cell receptors. J. Exp. Med. 193, 551–562 (2001).

    Article  CAS  Google Scholar 

  44. Tynan, F.E. et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat. Immunol. 6, 1114–1122 (2005).

    Article  CAS  Google Scholar 

  45. Gao, G.F. et al. Classical and nonclassical class I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8αα. J. Biol. Chem. 275, 15232–15238 (2000).

    Article  CAS  Google Scholar 

  46. Llano, M., Guma, M., Ortega, M., Angulo, A. & Lopez-Botet, M. Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E expression: impact on target susceptibility to NK cell subsets. Eur. J. Immunol. 33, 2744–2754 (2003).

    Article  CAS  Google Scholar 

  47. Shiina, T. et al. Molecular dynamics of MHC genesis unraveled by sequence analysis of the 1,796,938-bp HLA class I region. Proc. Natl. Acad. Sci. USA 96, 13282–13287 (1999).

    Article  CAS  Google Scholar 

  48. Knapp, L.A., Cadavid, L.F. & Watkins, D.I. The MHC-E locus is the most well conserved of all known primate class I histocompatibility genes. J. Immunol. 160, 189–196 (1998).

    CAS  PubMed  Google Scholar 

  49. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  50. Clements, C.S. et al. The production, purification and crystallization of a soluble heterodimeric form of a highly selected T-cell receptor in its unliganded and liganded state. Acta Crystallogr. D Biol. Crystallogr. 58, 2131–2134 (2002).

    Article  Google Scholar 

  51. Burrows, S.R. et al. Peptide-MHC class I tetrameric complexes display exquisite ligand specificity. J. Immunol. 165, 6229–6234 (2000).

    Article  CAS  Google Scholar 

  52. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  53. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  54. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Coulie for HLA-E tetramers; A. Purcell for critical reading of the manuscript; and the Biocars staff at Advanced Photon Source (Chicago, Illinois) for assistance with data collection. Supported by the National Health and Medical Research Council, Doherty Fellowships from the National Health and Medical Research Council (L.C.S. and T.B.), the Australian Research Council, an Australian Research Council Professorial Fellowship (J.R.) and a Wellcome Trust Senior Research Fellowship in Biomedical Science (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamie Rossjohn or Andrew G Brooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoare, H., Sullivan, L., Pietra, G. et al. Structural basis for a major histocompatibility complex class Ib–restricted T cell response. Nat Immunol 7, 256–264 (2006). https://doi.org/10.1038/ni1312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing