Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective regulation of tumor necrosis factor–induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase

Abstract

The proinflammatory cytokine tumor necrosis factor (TNF) modulates cellular responses through the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, but the molecular mechanisms underlying MAPK activation are unknown. T cell protein tyrosine phosphatase (TCPTP) is essential for hematopoietic development and negatively regulates inflammatory responses. Using TCPTP-deficient fibroblasts, we show here that TCPTP regulates TNF-induced MAPK but not NF-κB signaling. TCPTP interacted with the adaptor protein TRAF2, and dephosphorylated and inactivated Src tyrosine kinases to suppress downstream signaling through extracellular signal–regulated kinases and production of interleukin 6. These results link TCPTP and Src tyrosine kinases to the selective regulation of TNF-induced MAPK signaling and identify a previously unknown mechanism for modulating inflammatory responses mediated by TNF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced TNF-induced Erk1/2 signaling in TCPTP-deficient cells.
Figure 2: Overexpressed TCPTP inhibits TNF-induced MAPK signaling.
Figure 3: TCPTP acts in the cytoplasm to inhibit TNF-induced MAPK signaling.
Figure 4: TCPTP acts upstream of MAP3Ks and interacts with TRAF2.
Figure 5: Enhanced TNF-induced IL-6 production in TCPTP-deficient cells.
Figure 6: TCPTP dephosphorylates and inactivates SFKs.
Figure 7: Enhanced SFK activation in TCPTP-deficient cells.

Similar content being viewed by others

References

  1. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11, 372–377 (2001).

    Article  CAS  Google Scholar 

  2. Kyriakis, J.M. Life-or-death decisions. Nature 414, 265–266 (2001).

    Article  CAS  Google Scholar 

  3. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  4. Devin, A., Lin, Y. & Liu, Z.G. The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623–627 (2003).

    Article  CAS  Google Scholar 

  5. Chadee, D.N., Yuasa, T. & Kyriakis, J.M. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol. Cell. Biol. 22, 737–749 (2002).

    Article  CAS  Google Scholar 

  6. Ibarra-Sanchez, M. et al. The T-cell protein tyrosine phosphatase. Semin. Immunol. 12, 379–386 (2000).

    Article  CAS  Google Scholar 

  7. Tiganis, T., Bennett, A.M., Ravichandran, K.S. & Tonks, N.K. Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol. Cell. Biol. 18, 1622–1634 (1998).

    Article  CAS  Google Scholar 

  8. Galic, S. et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol. Cell. Biol. 23, 2096–2108 (2003).

    Article  CAS  Google Scholar 

  9. Simoncic, P.D., Lee-Loy, A., Barber, D.L., Tremblay, M.L. & McGlade, C.J. The T-cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol. 12, 446–453 (2002).

    Article  CAS  Google Scholar 

  10. ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22, 5662–5668 (2002).

    Article  CAS  Google Scholar 

  11. Ibarra-Sanchez, M.J., Wagner, J., Ong, M.T., Lampron, C. & Tremblay, M.L. Murine embryonic fibroblasts lacking TC-PTP display delayed G1 phase through defective NFκB activation. Oncogene 20, 4728–4739 (2001).

    Article  CAS  Google Scholar 

  12. Tiganis, T., Kemp, B.E. & Tonks, N.K. The protein tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signalling. J. Biol. Chem. 274, 27768–27775 (1999).

    Article  CAS  Google Scholar 

  13. Galic, S. et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol. Cell. Biol. 25, 819–829 (2005).

    Article  CAS  Google Scholar 

  14. You-Ten, K.E. et al. Impaired bone marrow microenvironment and immune function in T-cell protein tyrosine phosphatase-deficient mice. J. Exp. Med. 186, 683–693 (1997).

    Article  CAS  Google Scholar 

  15. Heinonen, K.M. et al. T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood 103, 3457–3464 (2004).

    Article  CAS  Google Scholar 

  16. Rosette, C. & Karin, M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274, 1194–1197 (1996).

    Article  CAS  Google Scholar 

  17. Tobin, D., van Hogerlinden, M. & Toftgard, R. UVB-induced association of tumor necrosis factor (TNF) receptor 1/TNF receptor-associated factor-2 mediates activation of Rel proteins. Proc. Natl. Acad. Sci. USA 95, 565–569 (1998).

    Article  CAS  Google Scholar 

  18. Mattila, E. et al. Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP. Nat. Cell Biol. 7, 78–85 (2005).

    Article  CAS  Google Scholar 

  19. Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  20. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  Google Scholar 

  21. Zabolotny, J.M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–495 (2002).

    Article  CAS  Google Scholar 

  22. Myers, M.P. et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 276, 47771–47774 (2001).

    Article  CAS  Google Scholar 

  23. Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A. & Neel, B.G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545–560 (1992).

    Article  CAS  Google Scholar 

  24. Lam, M.H. et al. Cellular stress regulates the nucleocytoplasmic distribution of the protein tyrosine phosphatase TCPTP. J. Biol. Chem. 276, 37700–37707 (2001).

    Article  CAS  Google Scholar 

  25. Naka, T., Nishimoto, N. & Kishimoto, T. The paradigm of IL6: from basic science to medicine. Arthritis Res. 4 (Suppl. 3), S233–S242 (2002).

    Article  Google Scholar 

  26. You, M., Flick, L.M., Yu, D. & Feng, G.S. Modulation of the nuclear factor κB pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J. Exp. Med. 193, 101–110 (2001).

    Article  CAS  Google Scholar 

  27. Wysk, M., Yang, D.D., Lu, H.T., Flavell, R.A. & Davis, R.J. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc. Natl. Acad. Sci. USA 96, 3763–3768 (1999).

    Article  CAS  Google Scholar 

  28. Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    Article  CAS  Google Scholar 

  29. Taylor, S.J., Anafi, M., Pawson, T. & Shalloway, D. Functional interaction between c-Src and its mitotic target, Sam 68. J. Biol. Chem. 270, 10120–10124 (1995).

    Article  CAS  Google Scholar 

  30. Bivona, T.G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    Article  CAS  Google Scholar 

  31. Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23, 8017–8023 (2004).

    Article  CAS  Google Scholar 

  32. Ponniah, S., Wang, D.Z., Lim, K.L. & Pallen, C.J. Targeted disruption of the tyrosine phosphatase PTPα leads to constitutive downregulation of the kinases Src and Fyn. Curr. Biol. 9, 535–538 (1999).

    Article  CAS  Google Scholar 

  33. Gil-Henn, H. & Elson, A. Tyrosine phosphatase-ε activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J. Biol. Chem. 278, 15579–15586 (2003).

    Article  CAS  Google Scholar 

  34. Hermiston, M.L., Xu, Z., Majeti, R. & Weiss, A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109, 9–14 (2002).

    Article  CAS  Google Scholar 

  35. Zhang, S.Q. et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

    Article  Google Scholar 

  36. Lorenz, U., Ravichandran, K.S., Burakoff, S.J. & Neel, B.G. Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc. Natl. Acad. Sci. USA 93, 9624–9629 (1996).

    Article  CAS  Google Scholar 

  37. Bjorge, J.D., Pang, A. & Fujita, D.J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–41446 (2000).

    Article  CAS  Google Scholar 

  38. Dube, N., Cheng, A. & Tremblay, M.L. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc. Natl. Acad. Sci. USA 101, 1834–1839 (2004).

    Article  CAS  Google Scholar 

  39. Galbiati, F., Razani, B. & Lisanti, M.P. Emerging themes in lipid rafts and caveolae. Cell 106, 403–411 (2001).

    Article  CAS  Google Scholar 

  40. Arron, J.R., Pewzner-Jung, Y., Walsh, M.C., Kobayashi, T. & Choi, Y. Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling. J. Exp. Med. 196, 923–934 (2002).

    Article  CAS  Google Scholar 

  41. Doan, J.E., Windmiller, D.A. & Riches, D.W. Differential regulation of TNF-R1 signaling: lipid raft dependency of p42mapk/erk2 activation, but not NFκB activation. J. Immunol. 172, 7654–7660 (2004).

    Article  CAS  Google Scholar 

  42. Muppidi, J.R., Tschopp, J. & Siegel, R.M. Life and death decisions; Secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21, 461–465 (2004).

    Article  CAS  Google Scholar 

  43. Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    Article  CAS  Google Scholar 

  44. Wong, B.R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).

    Article  CAS  Google Scholar 

  45. Mukundan, L. et al. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J. Immunol. 174, 1081–1090 (2005).

    Article  CAS  Google Scholar 

  46. Chiu, V.K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350 (2002).

    Article  CAS  Google Scholar 

  47. Thomas, R.M. et al. C-terminal SRC kinase controls acute inflammation and granulocyte adhesion. Immunity 20, 181–191 (2004).

    Article  CAS  Google Scholar 

  48. Shultz, L.D. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    Article  CAS  Google Scholar 

  49. Tsui, H.W., Siminovitch, K.A., de Souza, L. & Tsui, F.W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4, 124–129 (1993).

    Article  CAS  Google Scholar 

  50. Lowell, C.A., Fumagalli, L. & Berton, G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J. Cell Biol. 133, 895–910 (1996).

    Article  CAS  Google Scholar 

  51. Abu-Amer, Y. et al. Tumor necrosis factor-α activation of nuclear transcription factor-κB in marrow macrophages is mediated by c-Src tyrosine phosphorylation of Iκ Bα. J. Biol. Chem. 273, 29417–29423 (1998).

    Article  CAS  Google Scholar 

  52. Huang, S. et al. Defective activation of c-Src in cystic fibrosis airway epithelial cells results in loss of tumor necrosis factor-α-induced gap junction regulation. J. Biol. Chem. 278, 8326–8332 (2003).

    Article  CAS  Google Scholar 

  53. Huang, W.C., Chen, J.J. & Chen, C.C. c-Src-dependent tyrosine phosphorylation of IKKβ is involved in tumor necrosis factor-α-induced intercellular adhesion molecule-1 expression. J. Biol. Chem. 278, 9944–9952 (2003).

    Article  CAS  Google Scholar 

  54. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Tonks, A. Bennett and N. Court for critical reading of the manuscript and lab members for technical assistance and discussions. Supported by the National Health and Medical Research Council of Australia. T.T. is a Monash University Logan Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Tiganis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Enhanced TNF-induced ERK1/2 signalling in TCPTP-deficient cells. (PDF 131 kb)

Supplementary Fig. 2

TNF-induced proliferation and cell death are not altered in TCPTP-deficient cells. (PDF 133 kb)

Supplementary Fig. 3

PP1 but not AG1478 or AG490 suppresses the enhanced TNF-induced activation of ERK1/2 in TCPTP-deficient cells. (PDF 136 kb)

Supplementary Fig. 4

Y418 phosphorylated Src-Y527F can be precipitated by the TCPTP-D182A “substrate-trapping” mutant. (PDF 110 kb)

Supplementary Fig. 5

Tyrosine phosphorylated SFKs can be precipitated by the TCPTP-D182A “substrate-trapping” mutant in response to TNF. (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vliet, C., Bukczynska, P., Puryer, M. et al. Selective regulation of tumor necrosis factor–induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol 6, 253–260 (2005). https://doi.org/10.1038/ni1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing