Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

Labeled antigens and antibodies: the evolution of magic markers and magic bullets

Abstract

The ability to label antigens and antibodies with simple chemicals and even with whole proteins fostered new approaches to basic studies of the immune system as well as new methods of immunodiagnosis and immunotherapy. This was especially true following the introduction of monoclonal antibodies, which enhanced the specificity of many of these applications. The uses to which these labeled immunoreagents were put were legion, and those who employed them might come from any field of biology or medicine. Many of these technical elaborations were critical to progress in immunology and in many other biomedical sciences. They illustrate also the often complex interplay between technology and theory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehrlich, P. The Collected Papers of Paul Ehrlich Vol. 3, 59 (Pergamon, London, 1960).

    Google Scholar 

  2. Keating, P. & Cambrosio, A. J. Hist. Biol. 27, 449–479 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Obermeyer, F. & Pick, E.P. Wien. klin. Wochenschr 19, 327–334 (1906); Pick, E.P. Biochimie der Antigene in Handbuch der pathogenen Mikroorganismen 2nd edn. Part I 685–868 (Fischer, Jena, 1912).

    Google Scholar 

  4. Further testimony to the rapid expansion of interest in these techniques is provided by Immunocytochemistry: Practical Applications in Pathology and Biology (eds. Polak, J.M. & Van Noorden, S.) (J. Wright, Bristol, 1983). In just 3 years between the first and second editions (1983–1986), the size increased from 396 to 703 pages.

  5. Landsteiner, K. & Lampl, H.Z. Immunitätsforsch 26, 258–276; 293–304 (1917); also Landsteiner's magnum opus The Specificity of Serological Reactions (Dover, New York, 1962). This is a reprint of the second edition (Harvard University Press, Cambridge, 1945).

    Google Scholar 

  6. D. W. Talmage discussed degeneracy in the context of Burnet's clonal selection theory in Science 129, 1643–1648 (1959).

  7. Landsteiner, K. & van der Scheer, J. J. Exp. Med 67, 709–723 (1938); Kabat, E.A. J. Immunol. 77, 377–385 (1956) and 97, 1–11 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pressman, D.P. Adv. Biol. Med. Physics 3, 100–152 (1953); Karush, F. Adv. Immunol. 2, 1–40 (1962).

    Google Scholar 

  9. Kabat, E.A. Structural Concepts in Immunology and Immunochemistry (Rinehart & Winston, New York, 1968); Pressman, D.P. & Grossberg, A. The Structural Basis of Antibody Specificity (Benjamin, New York, 1968).

    Google Scholar 

  10. Eisen, H.N. & Karush, F. J. Am. Chem. Soc. 71, 363–364 (1949).

    Article  CAS  PubMed  Google Scholar 

  11. Sabin, F. J. Exp. Med. 70, 67–82 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nairn, R.C. in Fluorescent Protein Tracing 3rd edn. 95–110 (Williams & Wilkins, Baltimore, 1964).

    Google Scholar 

  13. The first use of radiolabeled antigen was that of Libby, R.L. & Madison, C.R. J. Immunol 55, 15–26 (1947); they studied the distribution of radiophosphorus-labeled tobacco mosaic virus.

  14. Pressman, D., Yagi, Y. & Hiramoto, R. Int. Arch. Allergy 12, 127–136 (1958).

    Article  Google Scholar 

  15. Dixon, F.J., Talmage, D.E. & Maurer, P.E. J. Immunol 68, 693–700 (1952); Waldmann, T.A. & Strober, W. Progr. Allergy 13, 1–110 (1969).

    CAS  PubMed  Google Scholar 

  16. Campbell, D.H. & Garvey, J.S. Adv. Immunol. 3, 261–313 (1963). Dan Campbell had been a student of Pauling's, as had David Pressman.

    Article  CAS  Google Scholar 

  17. Heidelberger, M., Kendall, F.E. & Soo Hoo, C. J. Exp. Med. 58, 137–152 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farr, R.S. J. Infect. Dis 103, 239–262 (1958). Polyethylene glycol was also used as the precipitating agent by Debuquois, B. & Auerbach, G.D. J. Clin. Endocrinol. Metab. 33, 732–738 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Yalow, R.S. & Berson, S.A. J. Clin. Invest 39, 1157–1175 (1960). Yalow shared the Nobel Prize in physiology or medicine for 1977 for this discovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Avrameas, S.P., Druet, P., Masseyeff, R. & Feldmann, G. Immunoenzymatic Techniques (Elsevier, Amsterdam, 1983).

  21. Carroll, M.C. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Villiers, M.B. J. Immunol 162, 3647–3652 (1999); Rest, S.T. Infect. Immun. 69, 3031–3040 (2001).

    CAS  PubMed  Google Scholar 

  23. Reiner, L. Science 72, 483–484 (1930).

    Article  CAS  PubMed  Google Scholar 

  24. Breinl, F. & Haurowitz, F. Z. Physiol. Chem. 192, 45–57 (1930).

    Article  CAS  Google Scholar 

  25. Breinl, F. & Haurowitz, F.Z. Immunitätsforsch. 77, 176–186 (1932).

    CAS  Google Scholar 

  26. Marrack, J.R. Nature 133, 292–293 (1934).

    Article  CAS  Google Scholar 

  27. Coons, A.H. J. Immunol. 87, 499–503 (1961).

    CAS  PubMed  Google Scholar 

  28. Coons, A.H., Creech, H.J. & Jones, R.N. Proc. Soc. Exp. Biol. Med. 47, 200–202 (1941).

    Article  CAS  Google Scholar 

  29. Coons, A.H., Creech, H.J., Jones, R.N. & Berliner, E. J. Immunol. 45, 159–170 (1942). Coupling via the isothiocyanate in place of the more difficult isocyanate derivative was introduced by Riggs, J.L. et al. Am. J. Pathol. 34, 1081–1097 (1958).

    CAS  Google Scholar 

  30. Hijmans, W. & Schaeffer, M. (eds.). Fifth International Conference on Immunofluorescence and Related Staining Techniques. Ann. NY Acad. Sci. 254, (1975); Nairn, R.C. Fluorescent Protein Tracing 4th edn. (Churchill Livingstone, Edinburgh, 1976); Knapp, W., Holubar, K. & Wick, G. Immunofluorescence and Related Staining Techniques (Elsevier, New York, 1978); Larsson, L.-I. Immunocytochemistry: Theory and Practice (CRC Press, Boca Raton, Florida, 1988).

  31. Coons, A.H., Leduc, E.H. & Connolly, J.M. J. Exp. Med. 102, 49–60 (1955). Another 'sandwich' method involves the conjugation of a hapten to the antibody, with development of color using fluorescein-labeled anti-hapten, Lamm, M.E. et al. Proc. Natl. Acad. Sci. USA 69, 3732–3736 (1972); Wofsy, L. et al. J. Exp. Med. 140, 523–537 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silverstein, A.M. J. Histochem. Cytochem. 5, 94–95 (1957); Hiramoto, R., Engel, K. & Pressman, D.P. Proc. Soc. Exp. Biol. Med. 97, 611–614 (1958).

    Article  Google Scholar 

  33. Coons, A.H., Leduc, E.H. & Connally, J.M. J. Exp. Med. 102, 49–60 (1955); this conclusion had earlier been reached by Astrid Fagreaus in Antibody production in relation to the development of plasma cells. Acta Med. Scand. 204 (Suppl.) (1948).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ortega, L.G. & Mellors, R.C. J. Exp. Med. 106, 627–640 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu, A.C. Immunocytochemistry in dermatology. in Immunocytochemistry 2nd edn. (eds. Polak, J.M. & Van Noorden, S.) 618–637 (Wright, Bristol, 1986); Unanue, E.R. & Dixon, F.J. Adv. Immunol. 6, 1–90 (1967); Elias, J.M. Immunohistopathology: A Practical Approach to Diagnosis (ASCP Press, Chicago, 1990).

    Google Scholar 

  36. Nakane, P.K. & Pierce, G.B. J. Histochem. Cytochem. 14, 929–931 (1966); Avrameas, S. & Lespinats, G. C.R. Acad. Sci. Paris 265, 1149–1153 (1967); Avrameas, S. Immunochemistry 6, 43–52 (1969).

    Article  CAS  PubMed  Google Scholar 

  37. The many uses of this approach are detailed in chapters 3–7 of Cuello, A.C. (ed.). Immunohistochemistry (New York, John Wiley, 1983). The technique has largely been superseded by an immunoenzyme sandwich method in which the enzyme binds to an antibody-combining site rather than being attached chemically (Sternberger, L.A. & Cuculis, J.J. J. Histochem. Cytochem. 17, 190 (1969); Sternberger, L.A. Immunocytochemistry 4th edn. (John Wiley, New York, 1989)).

    Google Scholar 

  38. Mason, D.Y. & Sammons, R.E. J. Clin. Pathol. 31, 454–462 (1978). For applications of this technique using monoclonal antibodies, Boorsma, D.M. Histochemistry 80, 103–106 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwards, J.C. & Moon, C.R. in Immunodiagnosis of Cancer 2nd edn. (eds. Herberman, R.B. & Mercer, D.W.) 95–106 (Decker, New York, 1990).

    Google Scholar 

  40. For example, Hunt, S.P., Allanson, J. & Mantyh, P.W. Radioimmunocytochemistry. in Immunocytochemistry 2nd edn. (eds. Polak, J.M. & Van Noorden, S.) 99–114 (Wright, Bristol, 1986).

    Google Scholar 

  41. Coggi, G., Dell'Orto, P. & Viale, G. in Immunocytochemistry 2nd edn. (eds. Polak, J.M. & Van Noorden, S.) 54–70 (Wright, Bristol, 1986).

  42. Towbin, H., Staehelin, T. & Gordon, J. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galfré, G. & Milstein, C. Methods Enzymol. 73, 3–46 (1981); Cuello, A.C., Milstein, C. & Galfré, G. in Immunohistochemistry (ed. Cuello, A.C.) 215–256 (John Wiley, New York, 1983).

    Google Scholar 

  44. Polak, J.M. & Varndell, I.M. (eds). Immunolabeling for Electron Microscopy (Elsevier, Amsterdam, 1984).

    Google Scholar 

  45. Mason, D.Y. et al. in Monoclonal Antibodies in Clinical Medicine (eds. McMichael, A.J. & Fabre, J.) 585–635 (Academic Press, London, 1982).

    Google Scholar 

  46. Singer, S.J. Nature 183, 1523–1524 (1959).

    Article  CAS  PubMed  Google Scholar 

  47. Uranium: Sternberger, L.A. et al. Exp. Mol. Pathol. 4, 112–125 (1965); iron: Yamamoto, N., Acta Histochem. Cytochem. 10, 246–262 (1977); mercury: Kendall, P.A., Biochim. Biophys. Acta 97, 174–176 (1965).

    Article  CAS  PubMed  Google Scholar 

  48. Faulk, W.P. & Taylor, G. Immunochemistry, 8, 1081–1083 (1971); De May, J.R. in Immunohistochemistry (ed. Cuello, A.C.) 347–372 (John Wiley, New York, 1983).

    Google Scholar 

  49. Roth, J. J. Histochem. Cytochem. 31, 987–999 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Romano, E.L. & Romano, M. Immunochem. 14, 711–715 (1977).

    Article  CAS  Google Scholar 

  51. Varndell, I.M. & Polak, J.M. in Immunolabeling for Electron Microscopy (eds. Polak, J.M. & Varndell, I.M.) 155–177 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  52. McCluskey, R.T., Benacerraf, B. & McCluskey, J.W. J. Immunol 90, 466–477 (1963); Feldman, J.D. & Najarian, J.S. J. Immunol. 91, 306–312 (1963); Prendergast, R.A. J. Exp. Med. 119, 377–388 (1964).

    CAS  PubMed  Google Scholar 

  53. Bain, B. & Lowenstein, L. Science 145, 1315–1316 (1964); Dupont, B. & Hansen, J.A. Adv. Immunol. 23, 107–202 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Möller, G. J. Exp. Med. 114, 415–434 (1961); Cerottini, J.-C. & Brunner, K.T. Immunology 13, 395–403 (1967).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Raff, M.C., Sternberg, M. & Taylor, R.B. Nature 225, 553–554 (1970).

    Article  CAS  PubMed  Google Scholar 

  56. Loken, M.R. & Herzenberg, L.A. Ann. NY Acad. Sci. 254, 163–171 (1975); Herzenberg, L.A. & De Rosa, S.C. Immunol. Today 21, 383–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Cambrosio, A. & Keating, P. Med. Anthropol. Quarterly 6, 362–384 (1992). Also Cambrosio and Keating's Biomedical Platforms (MIT Press, Cambridge, Massachusetts, 2003).

    Article  Google Scholar 

  58. Nomenclature for clusters of differentiation (CD) of antigens defined on human leukocyte populations. Bull. World Health Org. 62, 809–811 (1984); Shaw, S. Immunol. Today 8, 1–3 (1987). For the application of FACS to cell surface markers, Herzenberg, L.A. (ed.). Weir's Handbook of Experimental Immunology 5th edn. Vol. II Cell Surface and Messenger Molecules of the Immune System (Blackwell Scientific, Cambridge, Massachusetts, 1996).

    Google Scholar 

  59. Chess, L. & Schlossman, S.F. Adv. Immunol. 25, 213–241 (1977).

    Article  CAS  PubMed  Google Scholar 

  60. A useful general review of the broad field of cancer immunotherapy is by Vitetta, E.S. et al. in Fundamental Immunology 5th edn. (ed. Paul, W.E.) 1621–1659 (Lippincott Williams & Wilkins, New York, 2003).

    Google Scholar 

  61. Héricourt, J. & Richet, C. C.R. Acad. Sci 120, 948–950; 121, 567–569 (1895); Salvati, V. & de Gaetano, L. Riforma Med. 11, 495–507 (1895).

    Google Scholar 

  62. Sell. S. (ed.). Serological Cancer Markers (Humana Press, Totowa, New Jersey, 1992); Garrett, C.T. & Sell, S. (eds.). Cellular Cancer Markers (Humana Press, Totowa, New Jersey, 1995).

    Book  Google Scholar 

  63. Vogel, C.-W. Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer (Oxford University Press, New York, 1987); Antibody Immunoconj. Radiopharmaceut. 2 (1989, special issue); Chatal, J.-F. (ed.). Monoclonal Antibodies in Immunoscintigraphy (CRC Press, Boca Raton, Florida, 1989); Goldenberg, D.M. (ed.). Cancer Imaging with Radiolabeled Antibodies (Kluwer, Boston, 1990); Perkins, A.C. & Pimm, M.V. Immunoscintigraphy: Practical Aspects and Clinical Applications (Wiley-Liss, New York, 1991).

    Google Scholar 

  64. Pressman, D.P. & Keighly, G. J. Immunol. 59, 141–146 (1948); this approach was then used by Pressman, D.P. & Korngold, L. Cancer 6, 619–623 (1953) and by Pressman, D.P. & Day, E.D. Cancer Res. 17, 845–850 (1957).

    CAS  PubMed  Google Scholar 

  65. The history of early attempts at the immunodetection of tumors is reviewed by Goldenberg, D.M. in Cancer Imaging with Radiolabeled Antibodies (ed. Goldenberg, D.M.) 3–9 (Kluwer, Boston, 1990).

  66. Köhler, G. & Milstein, C. Nature 256, 495–497 (1975). The history of monoclonal antibody technology and its influence on various basic and clinical fields can be found in Cambrosio, A. & Keating, P. Exquisite Specificity: The Monoclonal Antibody Revolution (Oxford University Press, New York, 1995).

    Google Scholar 

  67. Saccavini, J.C., Bohy, J. & Bruneau, J. in Monoclonal Antibodies in Immunoscintigraphy (ed. Chatal, J.-F.) 61–73 (CRC Press, Boca Raton, Florida,1989).

    Google Scholar 

  68. Gansow, O.A. et al. in Cancer Imaging with Radiolabeled Antibodies (ed. Goldenberg, D.M.) 153–171 (Kluwer, Boston, 1990).

    Book  Google Scholar 

  69. Gohr-Rosenthal, S. et al. Invest. Radiol. 28, 789–795 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Remsen, L.G. et al. Am. J. Neuroradiol. 17, 411–418 (1996).

    CAS  Google Scholar 

  71. Bashford, E.F., Murray, J.A. & Haaland, M. Sci. Rep. Imper. Cancer Res. Fund 3, 396 (1908).

    Google Scholar 

  72. Hauschka, T.S. Cancer Res. 12, 615–633 (1953).

    Google Scholar 

  73. Bagshawe, K.D. Drug Dev. Res. 34, 220–230 (1995); Senter, P.D. & Springer, C.J. Adv. Drug Del. Rev. 53, 247–264 (2001).

    Article  CAS  Google Scholar 

  74. Pressman, D.P. J. Allergy 22, 387–396 (1951). He pointed out that 1 milligram of antibody could carry as much as 100 millicuries of 131I.

    Article  CAS  PubMed  Google Scholar 

  75. Ada, G.L. & Byrt, P. Nature 222, 1291–1292 (1969); Humphrey, J.H. & Keller, H.U. in Developmental Aspects of Antibody Formation and Structure Vol. 2 (eds. J. Ŝterzl & I. R̂iha) 485–502 (Academic Press, New York, 1970); Ada, G.L. in Developmental Aspects of Antibody Formation and Structure Vol. 2 (eds. J. Ŝterzl & I. R̂iha) 503–519 (Academic Press, New York, 1970).

    Google Scholar 

  76. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, London, 1959).

    Book  Google Scholar 

  77. Volkman, D.J. et al. J. Exp. Med. 156, 634–639 (1982); Vitetta, E.S. et al. Science 219, 644–650 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Goldenberg, D.M. (ed.). Cancer Therapy with Radiolabeled Antibodies (CRC Press, Boca Raton, Florida, 1995); Wahl, R.L. in Diagnostic Nuclear Medicine 4th edn. (eds. Sandler, M.P. et al.) 969–985 (Lippincott Williams & Wilkins, New York, 2003).

    Google Scholar 

  79. Mishima, Y. (ed.). Cancer Neutron Capture Therapy (Kluwer, Boston, 1996).

    Book  Google Scholar 

  80. Bale, W.F. Proc. Nat. Cancer Conf. 2, 967–976 (1952).

    Google Scholar 

  81. Hall, W.A. (ed.). Immunotoxin Methods and Protocols (Humana Press, Totowa, New Jersey, 2000).

    Book  Google Scholar 

  82. Moolten, F.L. & Cooperband, S.R. Science 169, 68–70 (1970); also Thorpe, P.E. et al. Nature 271, 752–755 (1978).

    Article  CAS  PubMed  Google Scholar 

  83. Houston, L.L. & Ramakrishnan, S. in Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer (ed. Vogel, C.-W.) 71–96 (Oxford University Press, New York, 1987). A list of the various immunotoxins and their applications is given by Thrush, G.R. et al. Annu. Rev. Immunol 14, 49–71 (1996).

    Google Scholar 

  84. Kahan, B.D., Rajagopalan, P.R. & Hall, M.L. Transplantation 67, 276–284 (1999); Vincent, F. et al. N. Engl. J. Med. 338, 161–165 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Vallera, D.A. in Immunotoxins (ed. Frankel, A.E.) 515–535 (Kluwer, Boston, 1988); Bachier, C.R. & LeMaistre, C.F. in Monoclonal Antibody-Based Therapy of Cancer (ed. Grossbard, M.L.) 211–227 (Marcel Dekker, New York, 1998).

    Google Scholar 

  86. Mathé, G., Loc, T.B. & Bernard, J. C.R. Acad. Sci. 246, 1626–1628 (1958). Ghose et al. later used a chlorambucil conjugate, Brit. Med. J. 3, 495–499 (1972).

    Google Scholar 

  87. These include aminopterin, methotrexate, idarubicin, doxorubicin, vindesine, cisplatin, mitomycin C, adriamycin, daunamycin and cytosine arabinoside; Blair, A.H. & Ghose, T.I. J. Immunol. Methods 59, 129–143, 1983; Sela, M. & Hurwitz, E. in Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer (ed. Vogel, C.-W.) 189–216 (Oxford University Press, New York, 1987); Pietersz, G.A. et al. Antibody Immunoconj. Radiopharmaceut. 3, 27–35 (1990).

    Google Scholar 

  88. Vogel, C-W. in Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer (ed. Vogel, C.-W.) 170–188 (Oxford University Press, New York, 1987).

    Google Scholar 

  89. Sievers, E.L. et al. J. Clin. Oncol. 19, 3244–3254 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Bagshawe, K.D. Brit. J. Cancer 56, 531–532 (1987); Senter, P.D. et al. Proc. Natl. Acad. Sci. USA 85, 4842–4846 (1988); Melton, R.G. & Knox, R.J. Enzyme-Prodrug Strategies for Cancer Therapy (Kluwer, New York, 1999).

    Google Scholar 

  91. Mew, D. et al. J. Immunol 130, 1473–1477 (1983); Yarmush, M.L. et al. Crit. Rev. Ther. Drug Carrier Syst. 10, 197–252 (1993).

    CAS  PubMed  Google Scholar 

  92. Wat, C.-K. et al. Progr. Clin. Biol. Res. 170, 351–359 (1984); Oseroff, A.R. et al. Proc. Natl. Acad. Sci. USA 83, 8744–8748 (1986).

    CAS  Google Scholar 

  93. Torchilin, V.P. Immunomethods 4, 244–258. The entire issue is devoted to liposome technology and applications.

  94. Ghetie, M.A. et al. Blood 80, 2315–2320 (1992); Flavell, D.J. et al. Int. J. Cancer 62, 1–8 (1995).

    CAS  PubMed  Google Scholar 

  95. Smallshaw, J.E. Nat. Biotechnol. 21, 387–391 (2003); Kreitman, R.J. Nat. Biotechnol. 21, 372–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Bjorn, M.J. & Villemez, C.L. in Immunotoxins (ed. Frankel, A.E.) 255–277 (Kluwer, Boston, 1988); Fidias, P. in Monoclonal Antibody-Based Therapy of Cancer (ed. Grossbard, M.L.) 281–307 (Marcel Dekker, New York, 1998).

    Book  Google Scholar 

  97. Morrison, S.L. et al. Proc. Natl. Acad. Sci. USA 81, 6851–6855 (1984); Boulianne, G.L., Hozumi, N. & Shulman, M.J. Nature 312, 643–646 (1984); Reichmann, L. et al. Nature 332, 323–327 (1988); Winter, G. & Harris, W.J. Immunol. Today 14, 243–246 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A recombinant IT, by fusing two antibody variable domains to pseudomonas toxin, was described by Chaudhary, V.K. et al. Nature 339, 394–397 (1989); Brinkmann, U. et al. Proc. Natl. Acad. Sci. USA 90, 7538–7542 (1993); Pastan, I. & Kreitman, R.J. Investigational Drugs 3, 1089–1091 (2002).

  99. Green, L.L. et al. Nat. Genet. 7, 13–21 (1994); Little, M., Kipriyanov, S.M., Le Gall, F. & Moldenhauer, G. Immunol. Today 21, 364–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. For Fvs, Owens, R.J. & Young, R.J. J. Immunol. Methods 168, 149–165 (1994); for T cell receptors, Shusta, E.V. Nat. Biotechnol. 7, 754–759 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Boder, E.T. & Wittrup, K.D. Nat. Biotechnol. 15, 553–557 (1997); Feldhaus, M.J. et al. Nat. Biotechnol. 21, 163–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Boder, E.T., Midelfort, K.S. & Wittrup, K.D. Proc. Natl. Acad. Sci. USA 97, 10701–10705 (2000); Holler, P.D. et al. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000); van den Beuken, T. et al. FEBS Lett. 546, 288–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Foote, J. & Eisen, H.E. Proc. Natl. Acad. Sci. USA 97, 10697–10681 (2000).

    Article  Google Scholar 

  104. The technological revolution that would accompany monoclonal antibodies was not immediately apparent at the time, even to its authors. Thus, the editors of Nature might be forgiven for having rejected the Köhler-Milstein manuscript as not worthy to appear as a scientific report. They consigned it to the middle of a very long list of letters.

  105. Rheinberger, H.-J. Stud. Hist. Philos. Sci. 23, 305–331 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Adrian, E.D. The Mechanism of Nervous Action. Electrical Studies of the Neurone 4 (University of Pennsylvania Press, Philadelphia, 1932).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M Silverstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverstein, A. Labeled antigens and antibodies: the evolution of magic markers and magic bullets. Nat Immunol 5, 1211–1217 (2004). https://doi.org/10.1038/ni1140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing