Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells

Abstract

Thymocytes displaying self-reactive T cell receptors usually undergo negative selection in the thymus. Here we demonstrate that agonist peptides can promote positive selection of immature double-positive thymocytes into distinct lineages, varying with the agonist concentration and the animal's age. Microarray gene expression analyses showed broad transcriptional alterations in a set of transcripts associated with the innate immune system, as well as silencing of CD8β expression. The resulting CD8αα T cells showed a rapid effector cytokine response. Hence, T cells displaying self-reactive receptors can have the gene expression profile and phenotypic characteristics of innate immune cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agonist peptide restores positive selection in defective thymi from HY TCR–transgenic female mice.
Figure 2: The phenotype of mature cells elicited by agonist peptide varies with dose in RTOC and age in vivo.
Figure 3: Mature CD8αα cells of other TCR specificities are elicited by their cognate peptide.
Figure 4: CD8αα cells have a distinct gene expression profile.
Figure 5: Integrated set of genes involved in innate or NK function induced by agonist in TCRαβ T cells.
Figure 6: Innate-like character of the transcriptional patterns in CD8αα cells.
Figure 7: The density of TCR triggering in developing thymocytes engages an innate or an adaptive differentiation program.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Germain, R.N. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  2. Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618 (1994).

    Article  CAS  Google Scholar 

  3. Ashton-Rickardt, P.G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663 (1994).

    Article  CAS  Google Scholar 

  4. Hogquist, K.A., Jameson, S.C. & Bevan, M.J. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3, 79–86 (1995).

    Article  CAS  Google Scholar 

  5. Kawai, K. & Ohashi, P.S. Immunological function of a defined T-cell population tolerized to low-affinity self antigens. Nature 374, 68–69 (1995).

    Article  CAS  Google Scholar 

  6. Girao, C., Hu, Q., Sun, J. & Ashton-Rickardt, P.G. Limits to the differential avidity model of T cell selection in the thymus. J. Immunol. 159, 4205–4211 (1997).

    CAS  PubMed  Google Scholar 

  7. Wang, R., Nelson, A., Kimachi, K., Grey, H.M. & Farr, A.G. The role of peptides in thymic positive selection of class II major histocompatibility complex-restricted T cells. Proc. Natl. Acad. Sci. USA 95, 3804–3809 (1998).

    Article  CAS  Google Scholar 

  8. Kraj, P. et al. Positive selection of CD4+ T cells is induced in vivo by agonist and inhibited by antagonist peptides. J. Exp. Med. 194, 407–416 (2001).

    Article  CAS  Google Scholar 

  9. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 283–284 (2001).

    Article  Google Scholar 

  10. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  11. Park, S.H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  Google Scholar 

  12. Burnet, F.M. A modification of Jerne's theory of antibody production using the concept of clonal selection. C.A. Cancer J. Clin. 26, 119–121 (1976).

    Article  CAS  Google Scholar 

  13. von Boehmer, H., Teh, H.S. & Kisielow, P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol. Today 10, 57–61 (1989).

    Article  CAS  Google Scholar 

  14. Schwartz, R.H. in Fundamental Immunology (ed. Paul, W.E.) 701–739 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  15. Anderson, M.S. et al. Projection of an immunological self-shadow within the thymus by the aire protein. Science 298, 139–1401 (2002).

    Article  Google Scholar 

  16. Anderson, G., Jenkinson, E.J., Moore, N.C. & Owen, J.J. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73 (1993).

    Article  CAS  Google Scholar 

  17. Schulz, R.J., Parkes, A., Mizoguchi, E., Bhan, A.K. & Koyasu, S. Development of CD4CD8 αβ TCR+NK1.1+ T lymphocytes: thymic selection by self antigen. J. Immunol. 157, 4379–4389 (1996).

    CAS  PubMed  Google Scholar 

  18. Yasutomo, K., Doyle, C., Miele, L. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  Google Scholar 

  19. Rocha, B., von Boehmer, H. & Guy-Grand, D. Selection of intraepithelial lymphocytes with CD8α/α co-receptors by self-antigen in the murine gut. Proc. Natl. Acad. Sci. USA 89, 5336–5340 (1992).

    Article  CAS  Google Scholar 

  20. Cruz, D. et al. An opposite pattern of selection of a single T cell antigen receptor in the thymus and among intraepithelial lymphocytes. J. Exp. Med. 188, 255–265 (1998).

    Article  CAS  Google Scholar 

  21. Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  Google Scholar 

  22. Chidgey, A. & Boyd, R. Agonist peptide modulates T cell selection thresholds through qualitative and quantitative shifts in CD8 co-receptor expression. Int. Immunol. 9, 1527–1536 (1997).

    Article  CAS  Google Scholar 

  23. Barnden, M.J., Heath, W.R. & Carbone, F.R. Down-modulation of CD8 β-chain in response to an altered peptide ligand enables developing thymocytes to escape negative selection. Cell. Immunol. 175, 111–119 (1997).

    Article  CAS  Google Scholar 

  24. Hogquist, K.A. & Bonnevier, J.L. Development of peptide-selected CD8 T cells in fetal thymic organ culture occurs via the conventional pathway. J. Immunol. 161, 3896–3901 (1998).

    CAS  PubMed  Google Scholar 

  25. Teh, H.S. et al. Early deletion and late positive selection of T cells expressing a male-specific receptor in T-cell receptor transgenic mice. Dev. Immunol. 1, 1–10 (1990).

    Article  CAS  Google Scholar 

  26. Teh, H.S., Kishi, H., Scott, B. & von Boehmer, H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–806 (1989).

    Article  CAS  Google Scholar 

  27. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  28. Berg, L.J., Frank, G.D. & Davis, M.M. The effects of MHC gene dosage and allelic variation on T cell receptor selection. Cell 60, 1043–1053 (1990).

    Article  CAS  Google Scholar 

  29. Kersh, G.J., Engle, D.L., Williams, C.B. & Allen, P.M. Ligand-specific selection of MHC class II-restricted thymocytes in fetal thymic organ culture. J. Immunol. 164, 5675–5682 (2000).

    Article  CAS  Google Scholar 

  30. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  Google Scholar 

  31. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  Google Scholar 

  32. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  Google Scholar 

  33. Barton, K. et al. The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9, 555–563 (1998).

    Article  CAS  Google Scholar 

  34. Luster, A.D. The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol. 14, 129–135 (2002).

    Article  CAS  Google Scholar 

  35. Vorbach, C., Harrison, R. & Capecchi, M.R. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol. 24, 512–517 (2003).

    Article  CAS  Google Scholar 

  36. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    Article  CAS  Google Scholar 

  37. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  38. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    Article  CAS  Google Scholar 

  39. Bruno, L., Fehling, H.J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  CAS  Google Scholar 

  40. Buch, T., Rieux-Laucat, F., Forster, I. & Rajewsky, K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity 16, 707–718 (2002).

    Article  CAS  Google Scholar 

  41. Gao, G.F., Rao, Z. & Bell, J.I. Molecular coordination of αβ T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol. 23, 408–413 (2002).

    Article  Google Scholar 

  42. Bain, G. et al. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    Article  CAS  Google Scholar 

  43. Capone, M. et al. Selective absence of CD8+ TCRαβ+ intestinal epithelial cells in transgenic mice expressing β2-microglobulin-associated ligands exclusively on thymic cortical epithelium. Eur. J. Immunol. 33, 1471–1477 (2003).

    Article  CAS  Google Scholar 

  44. Gleimer, M. & Parham, P. Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 19, 469–477 (2003).

    Article  CAS  Google Scholar 

  45. Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R.A. & Margulies, D.H. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 20, 853–885 (2002).

    Article  CAS  Google Scholar 

  46. McMahon, C.W. & Raulet, D.H. Expression and function of NK cell receptors in CD8+ T cells. Curr. Opin. Immunol. 13, 465–470 (2001).

    Article  CAS  Google Scholar 

  47. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Poirot, E. Venanzi and A. Goldrath for microarray data sets; Q.-M. Pham and V. Bruklich for help with the mice; G. Losyev for flow cytometry; R. Park for help with the data analysis; and the T cell group for discussions. Supported by the National Institutes of Health (1R01AI51530), by core services from the National Institute of Diabetes and Digestive and Kidney Diseases–funded Diabetes Endocrinology Research Center (Joslin Diabetes Center) and by the Japan Society for the Promotion of Science and the Uehara Memorial Foundation (T.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diane Mathis or Christophe Benoist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat Immunol 5, 597–605 (2004). https://doi.org/10.1038/ni1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing