Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility

A Corrigendum to this article was published on 01 April 2004

Abstract

Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses. In this study, we examine the nature of the TLR5-flagellin interaction. With deletional, insertional and alanine-scanning mutagenesis, we precisely mapped the TLR5 recognition site on flagellin to a cluster of 13 amino acid residues that participate in intermolecular interactions within flagellar protofilaments and that are required for bacterial motility. The recognition site is buried in the flagellar filament, and monomeric flagellin, but not the filamentous molecule, stimulated TLR5. Finally, flagellin coprecipitated with TLR5, indicating close physical interaction between the molecules. These studies demonstrate the exquisite ability of the innate immune system to precisely target a conserved site on flagellin that is essential for bacterial motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D1 domain N- and C-terminal deletions abrogates TLR5 recognition.
Figure 2: TLR5 recognizes discrete site in the D1 domain.
Figure 3: Flagellin alanine point mutations reduce TLR5 recognition.
Figure 4: TLR5 recognizes monomeric and not filamentous flagellin.
Figure 5: Biotinylated flagellin specifically associates with TLR5.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mobley, H.L. et al. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 64, 5332–5340 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Feldman, M. et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmitt, C.K. et al. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625 (2001).

    Article  CAS  Google Scholar 

  4. Kavermann, H. et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J. Exp. Med. 197, 813–822 (2003).

    Article  CAS  Google Scholar 

  5. Chua, K.L., Chan, Y.Y. & Gan, Y.H. Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71, 1622–1629 (2003).

    Article  CAS  Google Scholar 

  6. Robertson, J.M. et al. Lack of flagella disadvantages Salmonella enterica serovar Enteritidis during the early stages of infection in the rat. J. Med. Microbiol. 52, 91–99 (2003).

    Article  Google Scholar 

  7. Ikeda, J.S. et al. Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect. Immun. 69, 3021–3030 (2001).

    Article  CAS  Google Scholar 

  8. Dietrich, C., Heuner, K., Brand, B.C., Hacker, J. & Steinert, M. Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect. Immun. 69, 2116–2122 (2001).

    Article  CAS  Google Scholar 

  9. Van Asten, F.J., Hendriks, H.G., Koninkx, J.F., Van der Zeijst, B.A. & Gaastra, W. Inactivation of the flagellin gene of Salmonella enterica serotype enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol. Lett. 185, 175–179 (2000).

    Article  CAS  Google Scholar 

  10. Dibb-Fuller, M.P., Allen-Vercoe, E., Thorns, C.J. & Woodward, M.J. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031 (1999).

    Article  CAS  Google Scholar 

  11. Hackett, J., Attridge, S. & Rowley, D. Oral immunization with live, avirulent fla+ strains of Salmonella protects mice against subsequent oral challenge with Salmonella typhimurium. J. Infect. Dis. 157, 78–84 (1988).

    Article  CAS  Google Scholar 

  12. Cookson, B.T. & Bevan, M.J. Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J. Immunol. 158, 4310–4319 (1997).

    CAS  PubMed  Google Scholar 

  13. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  14. Hayashi, F., Means, T.K. & Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660–2669 (2003).

    Article  CAS  Google Scholar 

  15. Gewirtz, A.T. et al. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109 (2001).

    Article  CAS  Google Scholar 

  16. Means, T.K., Hayashi, F., Smith, K.D., Aderem, A. & Luster, A.D. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170, 5165–5175 (2003).

    Article  CAS  Google Scholar 

  17. Ogushi, K. et al. Salmonella enteritidis FliC (flagella filament protein) induces human b-defensin-2 mRNA production by Caco-2 cells. J. Biol. Chem. 276, 30521–30526 (2001).

    Article  CAS  Google Scholar 

  18. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    Article  CAS  Google Scholar 

  19. Samakovlis, C., Asling, B., Boman, H.G., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes—an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).

    Article  CAS  Google Scholar 

  20. Gomez-Gomez, L., Bauer, Z. & Boller, T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155–1163 (2001).

    Article  CAS  Google Scholar 

  21. Samatey, F.A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001).

    Article  CAS  Google Scholar 

  22. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    Article  CAS  Google Scholar 

  23. Berg, H.C. & Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  CAS  Google Scholar 

  24. McDermott, P.F., Ciacci-Woolwine, F., Snipes, J.A. & Mizel, S.B. High-affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect. Immun. 68, 5525–5529 (2000).

    Article  CAS  Google Scholar 

  25. Steiner, T.S., Nataro, J.P., Poteet-Smith, C.E., Smith, J.A. & Guerrant, R.L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest. 105, 1769–1777 (2000).

    Article  CAS  Google Scholar 

  26. Eaves-Pyles, T.D., Wong, H.R., Odoms, K. & Pyles, R.B. Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167, 7009–7016 (2001).

    Article  CAS  Google Scholar 

  27. Donnelly, M.A. & Steiner, T.S. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456–40461 (2002).

    Article  CAS  Google Scholar 

  28. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  29. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  30. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  Google Scholar 

  31. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  Google Scholar 

  32. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  Google Scholar 

  33. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237–9242 (2001).

    Article  CAS  Google Scholar 

  34. Takeshita, F. et al. Cutting edge: role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).

    Article  CAS  Google Scholar 

  35. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P.S. & Ulevitch, R.J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129–21135 (2001).

    Article  CAS  Google Scholar 

  36. Viriyakosol, S., Tobias, P.S., Kitchens, R.L. & Kirkland, T.N. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 10, 10 (2001).

    Google Scholar 

  37. Burnens, A.P. et al. The flagellin N-methylase gene fliB and an adjacent serovar-specific IS200 element in Salmonella typhimurium. Microbiology 143, 1539–1547 (1997).

    Article  CAS  Google Scholar 

  38. Arora, S.K., Bangera, M., Lory, S. & Ramphal, R. A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA 98, 9342–9347 (2001).

    Article  CAS  Google Scholar 

  39. Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001).

    Article  CAS  Google Scholar 

  40. McSorley, S.J., Ehst, B.D., Yu, Y. & Gewirtz, A.T. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J. Immunol. 169, 3914–3919 (2002).

    Article  CAS  Google Scholar 

  41. Manoil, C. & Bailey, J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J. Mol. Biol. 267, 250–263 (1997).

    Article  CAS  Google Scholar 

  42. Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974).

    Article  CAS  Google Scholar 

  43. Yamashita, I. et al. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat. Struct. Biol. 5, 125–132 (1998).

    Article  CAS  Google Scholar 

  44. Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types of 'straight' flagellins. Nature 286, 628–630 (1980).

    Article  CAS  Google Scholar 

  45. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. & Madara, J.L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  Google Scholar 

  46. Gewirtz, A.T. et al. Salmonella typhimurium induces epithelial IL-8 expression via Ca2+-mediated activation of the NF-kB pathway. J. Clin. Invest. 105, 79–92 (2000).

    Article  CAS  Google Scholar 

  47. Hajjar, A.M., Ernst, R.K., Tsai, J.H., Wilson, C.B. & Miller, S.I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3, 354–359 (2002).

    Article  CAS  Google Scholar 

  48. Felix, G., Duran, J.D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

    Article  CAS  Google Scholar 

  49. Underhill, D.M., Ozinsky, A., Smith, K.D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96, 14459–14463 (1999).

    Article  CAS  Google Scholar 

  50. Smith, K.D., Valenzuela, A., Vigna, J.L., Aalbers, K. & Lutz, C.T. Unwanted mutations in PCR mutagenesis: avoiding the predictable. PCR Methods Appl. 2, 253–257 (1993).

    Article  CAS  Google Scholar 

  51. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Underhill, A. Ozinsky and members of the Aderem laboratory for their comments and suggestions. This work was supported by National Institutes of Health grants K08AI01751 (K.D.S.); R01AI032972, R37AI025032 and R01AI52286 (A.A.); and R01AI047242 (B.T.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly D Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Andersen-Nissen, E., Hayashi, F. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4, 1247–1253 (2003). https://doi.org/10.1038/ni1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing