Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells

Abstract

Intestinal microfold cells (M cells) are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses through the uptake and transcytosis of luminal antigens. The mechanisms of M-cell differentiation are poorly understood, as the rarity of these cells has hampered analysis. Exogenous administration of the cytokine RANKL can synchronously activate M-cell differentiation in mice. Here we show the Ets transcription factor Spi-B was induced early during M-cell differentiation. Absence of Spi-B silenced the expression of various M-cell markers and prevented the differentiation of M cells in mice. The activation of T cells via an oral route was substantially impaired in the intestine of Spi-B-deficient (Spib−/−) mice. Our study demonstrates that commitment to the intestinal M-cell lineage requires Spi-B as a candidate master regulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct expression patterns of M-cell markers in mouse VE after treatment with RANKL.
Figure 2: 'Preferential' expression of transcripts encoding Spi-B in mouse M cells.
Figure 3: Expression of M-cell markers in wild-type and Spib−/− mice.
Figure 4: RANKL-induced differentiation of M cells in wild-type and Spib−/− mice.
Figure 5: Disappearance of functional M cells from Spib−/− mice.
Figure 6: Maturation of M cells in bone marrow chimeras.
Figure 7: Defect in S.Typhimurium–specific activation of T cells in Spib−/− mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kraehenbuhl, J.P. & Neutra, M.R. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Neutra, M.R., Mantis, N.J. & Kraehenbuhl, J.P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Neutra, M.R., Frey, A. & Kraehenbuhl, J.P. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bockman, D.E. & Cooper, M.D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer's patches. An electron microscopic study. Am. J. Anat. 136, 455–477 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Owen, R.L. & Jones, A.L. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66, 189–203 (1974).

    CAS  PubMed  Google Scholar 

  6. Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Terahara, K. et al. Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hase, K. et al. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and M cells. DNA Res. 12, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Verbrugghe, P. et al. Murine M cells express annexin V specifically. J. Pathol. 209, 240–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hase, K. et al. The membrane-bound chemokine CXCL16 expressed on follicle-associated epithelium and M cells mediates lympho-epithelial interaction in GALT. J. Immunol. 176, 43–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11, 1427–1432 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Barker, N. & Clevers, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681–1696 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Gebert, A., Fassbender, S., Werner, K. & Weissferdt, A. The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. Am. J. Pathol. 154, 1573–1582 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ebisawa, M. et al. CCR6hiCD11cint B cells promote M-cell differentiation in Peyer's patch. Int. Immunol. 23, 261–269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golovkina, T.V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science 286, 1965–1968 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Kernéis, S., Bogdanova, A., Kraehenbuhl, J.P. & Pringault, E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952 (1997).

    Article  PubMed  Google Scholar 

  17. Taylor, R.T. et al. Lymphotoxin-independent expression of TNF-related activation-induced cytokine by stromal cells in cryptopatches, isolated lymphoid follicles, and Peyer's patches. J. Immunol. 178, 5659–5667 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Knoop, K.A. et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183, 5738–5747 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katz, J.P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    CAS  PubMed  Google Scholar 

  22. Bastide, P. et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol. 178, 635–648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mori-Akiyama, Y. et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology 133, 539–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Jenny, M. et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 21, 6338–6347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su, G.H. et al. The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J. Exp. Med. 184, 203–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Schotte, R. et al. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood 101, 1015–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Jang, M.H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 101, 6110–6115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rumbo, M., Sierro, F., Debard, N., Kraehenbuhl, J.-P. & Finke, D. Lymphotoxin β receptor signaling induces the chemokine CCL20 in intestinal epithelium. Gastroenterology 127, 213–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mach, J., Hshieh, T., Hsieh, D., Grubbs, N. & Chervonsky, A. Development of intestinal M cells. Immunol. Rev. 206, 177–189 (2005).

    Article  PubMed  Google Scholar 

  30. Pappo, J. & Ermak, T.H. Uptake and translocation of fluorescent latex particles by rabbit Peyer's patch follicle epithelium: a quantitative model for M cell uptake. Clin. Exp. Immunol. 76, 144–148 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Garrett-Sinha, L.A. et al. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10, 399–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. McSorley, S.J., Asch, S., Costalonga, M., Reinhardt, R.L. & Jenkins, M.K. Tracking salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16, 365–377 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Salazar-Gonzalez, R.M. et al. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 24, 623–632 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ray, D. et al. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol. Cell. Biol. 12, 4297–4304 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su, G.H. et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16, 7118–7129 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeKoter, R.P. et al. Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C. J. Immunol. 185, 7374–7384 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200, 1503–1509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jedlicka, P. & Gutierrez-Hartmann, A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol. Histopathol. 23, 1417–1424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng, A.Y.-N. et al. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology 122, 1455–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333–1345 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, X. et al. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells. J. Immunol. 171, 2797–2803 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bjerknes, M. & Cheng, H. Gastrointestinal stem cells. II. Intestinal stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G381–G387 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gulig, P.A., Doyle, T.J., Hughes, J.A. & Matsui, H. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect. Immun. 66, 2471–2485 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carter, P.B. & Collins, F.M. Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect. Immun. 9, 851–857 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Guo, Y. Obata, Y. Oohara, Y. Fujimura, M. Ohmae, C. Uetake, Y. Usami and S. Kimura for technical support; T. Kawai for electron microscopy analysis; and H. Matsui (Kitasato University) for S. Typhimurium. Supported by RIKEN (T.Kan., D.T. and I.S.), the Kishimoto Foundation (K.Ho., I.S., H.H. and T.Kai.), the Ministry of Education, Culture, Sports, Science and Technology of Japan (21022049 to K.Ha.; 20060033, 21022048 and 21117003 to T.Kai.; and 20113003 to H.O.), the Japan Society for the Promotion of Science (22689017 to K.Ha.; 23790550 to T.Kan.; 21390155 to H.O.; and 20390146, 23390124 and 18590483 to T.Kai.), the Japan Science and Technology Agency (K.Ha.), The Japan Science Society (K.Ha.), The Takeda Science Foundation (H.O.), The Mitsubishi Foundation (H.O.), The Uehara Memorial Foundation (T.Kai.), the US National Institutes of Health (DK64730 to I.R.W.) and the Bill & Melinda Gates Foundation (OPP1006977 to I.R.W.).

Author information

Authors and Affiliations

Authors

Contributions

I.R.W., K.Ha. and H.O. conceived of the study; T.Kan. designed and did the experiments, analyzed data and wrote the manuscript; K.Ha. contributed to adoptive-transfer experiments and data analysis; D.T. and Y.K. helped with flow cytometry; S.F. and T.J. helped with experiments involving infection with S. Typhimurium; K.N. and A.S. did expression analyses; K.Ho., I.S., H.H. and T.Kai. generated Spib−/− mice; K.A.K., N.K. and I.R.W. developed the protocol for treatment with RANKL; M.S. and K.T. helped with electron microscopy; O.Y. and T.Kat. provided human PP samples; S.J.M. provided SM1 mice; K.Ha. and I.R.W. edited the manuscript; and H.O. directed the research and edited the manuscript.

Corresponding authors

Correspondence to Tsuneyasu Kaisho, Ifor R Williams or Hiroshi Ohno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Tables 1–3 (PDF 18635 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanaya, T., Hase, K., Takahashi, D. et al. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat Immunol 13, 729–736 (2012). https://doi.org/10.1038/ni.2352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing