Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors

This article has been updated

Abstract

The most potent foreign antigens for natural killer T cells (NKT cells) are α-linked glycolipids, whereas NKT cell self-reactivity involves weaker recognition of structurally distinct β-linked glycolipid antigens. Here we provide the mechanism for the autoreactivity of T cell antigen receptors (TCRs) on NKT cells to the mono- and tri-glycosylated β-linked agonists β-galactosylceramide (β-GalCer) and isoglobotrihexosylceramide (iGb3), respectively. In binding these disparate antigens, the NKT cell TCRs docked onto CD1d similarly, achieving this by flattening the conformation of the β-linked ligands regardless of the size of the glycosyl head group. Unexpectedly, the antigenicity of iGb3 was attributable to its terminal sugar group making compensatory interactions with CD1d. Thus, the NKT cell TCR molds the β-linked self ligands to resemble the conformation of foreign α-linked ligands, which shows that induced-fit molecular mimicry can underpin the self-reactivity of NKT cell TCRs to β-linked antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical recognition of multiple CD1d-antigen complexes by NKT cell TCRs.
Figure 2: Overview of the structures of NKT cell TCR–CD1d–β-linked antigens.
Figure 3: Recognition of β-GalCer by human and mouse NKT cell TCRs.
Figure 4: Recognition of bulky β-linked ligands by NKT cell TCRs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 04 August 2011

    In the version of this article initially published online, in the diagrams at right in Figure 1, α-GalCer incorrectly included a second NH group and the acyl chain length of iGb3 was incorrect. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    CAS  PubMed  Google Scholar 

  3. Harkiolaki, M. et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30, 348–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Godfrey, D.I. & Rossjohn, J. New ways to turn on NKT cells. J. Exp. Med. 208, 1121–1125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wun, K.S. et al. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aspeslagh, S. et al. Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J. 30, 2294–2305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uldrich, A.P. et al. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nat. Immunol. 12, 616–623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Y. et al. The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J. Exp. Med. 207, 2383–2393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail–truncated CD1d. Nat. Immunol. 3, 55–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Brigl, M. & Brenner, M.B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin. Immunol. 22, 79–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Ortaldo, J.R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Parekh, V.V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Matulis, G. et al. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3β loop. PLoS Biol. 8, e1000402 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, D.Y., Segal, N.H., Sidobre, S., Kronenberg, M. & Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6, 819–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Zajonc, D.M. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6, 810–818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zajonc, D.M. et al. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202, 1517–1526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zajonc, D.M., Savage, P.B., Bendelac, A., Wilson, I.A. & Teyton, L. Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J. Mol. Biol. 377, 1104–1116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mallevaey, T. et al. T cell receptor CDR2β and CDR3β loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31, 60–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34, 315–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei, D.G., Curran, S.A., Savage, P.B., Teyton, L. & Bendelac, A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 203, 1197–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 6, e172 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. USA 104, 5977–5982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gapin, L. iNKT cell autoreactivity: what is 'self' and how is it recognized? Nat. Rev. Immunol. 10, 272–277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Speak, A.O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl. Acad. Sci. USA 104, 5971–5976 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schümann, J., Mycko, M.P., Dellabona, P., Casorati, G. & Macdonald, H.R. Cutting edge: influence of the TCR Vβ domain on the selection of semi-invariant NKT cells by endogenous ligands. J. Immunol. 176, 2064–2068 (2006).

    Article  PubMed  Google Scholar 

  36. Brigl, M. et al. Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176, 3625–3634 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Xia, C. et al. Modification of the ceramide moiety of isoglobotrihexosylceramide on its agonist activity in stimulation of invariant natural killer T cells. J. Med. Chem. 50, 3489–3496 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Florence, W.C. et al. Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J. 28, 3579–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colf, L.A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Macdonald, W.A. et al. T cell allorecognition via molecular mimicry. Immunity 31, 897–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Tynan, F.E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, N. et al. Alpha anomers of iGb3 and Gb3 stimulate cytokine production by natural killer T cells. ACS Chem. Biol. 4, 191–197 (2009).

    Article  CAS  Google Scholar 

  43. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Petrescu, A.-J., Milac, A.-L., Petrescu, S.M., Dwek, R.A. & Wormald, M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Scott-Browne, J.P. et al. Germline-encoded recognition of diverse glycolipids by NKT cells. Nat. Immunol. 8, 1105–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Arden, B. et al. Mouse T-cell receptor variable gene segment families. Immunogenetics. 42, 455–500 (1995).

    CAS  PubMed  Google Scholar 

  47. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  PubMed  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  49. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. CCP4 (Collaborative Computational Project, 4). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We thank F. Carbone for critically reading the manuscript; K. Wun, R. Koh and M. Sandoval for assistance; and J. Vivian and the staff at the MX2 beamline of the Australian synchrotron for assistance with data collection. Supported by the Cancer Council of Victoria, the National Health and Medical Research Council of Australia, the Australian Research Council, The Royal Society (G.S.B.), The Wellcome Trust (084923/B/08/Z to G.S.B.), the Medical Research Council (G1001750 to G.S.B.) and the US National Institutes of Health (AI45889 to S.A.P., and AI076463 and AI078246 to L.G.).

Author information

Authors and Affiliations

Authors

Contributions

D.G.P. and A.J.C., isolation and characterization of NKT cell TCR–CD1d–β-antigen complexes; T.B. and A.P.U., surface plasmon resonance studies; J.L.N., crystallographic analyses; T.M., functional studies; O.P., crystallization and solution of the structure of the human NKT cell TCR complex; G.S.B., S.A.P. and J.M., intellectual input; and L.G., D.I.G. and J.R., investigation leadership and project conception. L.G., D.I.G. and J.R. contributed equally to this work.

Corresponding authors

Correspondence to Dale I Godfrey or Jamie Rossjohn.

Ethics declarations

Competing interests

S.A.P. has received payments as a consultant for Vaccinex for work related to the development of therapeutics based on CD1d-presented glycolipids.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Tables 1–7 (PDF 3601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellicci, D., Clarke, A., Patel, O. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat Immunol 12, 827–833 (2011). https://doi.org/10.1038/ni.2076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing