Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages

Abstract

Endotoxin tolerance, a key mechanism for suppressing excessive inflammatory cytokine production, is induced by prior exposure of macrophages to Toll-like receptor (TLR) ligands. Induction of cross-tolerance to endotoxin by endogenous cytokines has not been investigated. Here we show that prior exposure to tumor necrosis factor (TNF) induced a tolerant state in macrophages, with less cytokine production after challenge with lipopolysaccharide (LPS) and protection from LPS-induced death. TNF-induced cross-tolerization was mediated by suppression of LPS-induced signaling and chromatin remodeling. TNF-induced cross-tolerance was dependent on the kinase GSK3, which suppressed chromatin accessibility and promoted rapid termination of signaling via the transcription factor NF-κB by augmenting negative feedback by the signaling inhibitors A20 and IκBα. Our results demonstrate an unexpected homeostatic function for TNF and a GSK3-mediated mechanism for the prevention of prolonged and excessive inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pretreatment with TNF suppresses the induction of proinflammatory cytokines on secondary challenge by LPS.
Figure 2: TNF suppresses cytokine production in vivo and protects mice from LPS-induced death.
Figure 3: TNF suppresses TLR4 signaling and induces A20 expression.
Figure 4: GSK3 mediates TNF-induced cross-tolerance.
Figure 5: GSK3 regulates the kinetics of IκBα expression and repression of NF-κB signaling after induction in LPS-stimulated, TNF-tolerized macrophages.
Figure 6: TNF-induced A20 expression is mediated by GSK3.
Figure 7: TNF and GSK3 regulate the accessibility of chromatin at the IL6 promoter.

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  2. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248–263 (2009).

    Article  CAS  Google Scholar 

  3. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A.J. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  4. Biswas, S.K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    Article  CAS  Google Scholar 

  5. Foster, S.L., Hargreaves, D.C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  Google Scholar 

  6. Foster, S.L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory response. Clin. Immunol. 130, 7–15 (2009).

    Article  CAS  Google Scholar 

  7. Smale, S.T. Selective transcription in response to an inflammatory stimulus. Cell 140, 833–844 (2010).

    Article  CAS  Google Scholar 

  8. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    Article  CAS  Google Scholar 

  9. Hodge-Dufour, J. et al. Inhibition of interferon γ induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc. Natl. Acad. Sci. USA 95, 13806–13811 (1998).

    Article  CAS  Google Scholar 

  10. Williams-Skipp, C. et al. Unmasking of a protective tumor necrosis factor receptor I-mediated signal in the collagen-induced arthritis model. Arthritis Rheum. 60, 408–418 (2009).

    Article  CAS  Google Scholar 

  11. Blüml, S. et al. Antiinflammatory effects of tumor necrosis factor on hematopoietic cells in a murine model of erosive arthritis. Arthritis Rheum. 62, 1608–1619 (2010).

    Article  Google Scholar 

  12. Zakharova, M. & Ziegler, H.K. Paradoxical anti-inflammatory actions of TNF-α: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells. J. Immunol. 175, 5024–5033 (2005).

    Article  CAS  Google Scholar 

  13. Marino, M.W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098 (1997).

    Article  CAS  Google Scholar 

  14. Kollias, G., Douni, E., Kassiotis, G. & Kontoyiannis, D. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol. Rev. 169, 175–194 (1999).

    Article  CAS  Google Scholar 

  15. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  Google Scholar 

  16. Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    Article  CAS  Google Scholar 

  17. Martin, M., Rehani, K., Jope, R.S. & Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777–784 (2005).

    Article  CAS  Google Scholar 

  18. Hu, X. et al. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24, 563–574 (2006).

    Article  CAS  Google Scholar 

  19. Beurel, E., Michalek, S.M. & Jope, R.S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 31, 24–31 (2010).

    Article  CAS  Google Scholar 

  20. Steinbrecher, K.A., Wilson, W., Cogswell, P.C. & Baldwin, A.S. Glycogen synthase kinase 3β functions to specify gene-specific, NF-κB-dependent transcription. Mol. Cell. Biol. 25, 8444–8455 (2005).

    Article  CAS  Google Scholar 

  21. Buss, H. et al. Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J. Biol. Chem. 279, 49571–49574 (2004).

    Article  CAS  Google Scholar 

  22. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  Google Scholar 

  23. Takada, Y. et al. Genetic deletion of glycogen synthase kinase-3β abrogates activation of IκBα kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J. Biol. Chem. 279, 39541–39554 (2004).

    Article  CAS  Google Scholar 

  24. Hoeflich, K.P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  25. Rodionova, E. et al. GSK-3 mediates differentiation and activation of proinflammatory dendritic cells. Blood 109, 1584–1592 (2007).

    Article  CAS  Google Scholar 

  26. Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  Google Scholar 

  27. Shen, E., Fan, J. & Peng, T. Glycogen synthase kinase-3β suppresses tumor necrosis factor-α expression in cardiomyocytes during lipopolysaccharide stimulation. J. Cell. Biochem. 104, 329–338 (2008).

    Article  CAS  Google Scholar 

  28. Vines, A. et al. Novel anti-inflammatory role for glycogen synthase kinase-3β in the inhibition of tumor necrosis factor-α- and interleukin-1β-induced inflammatory gene expression. J. Biol. Chem. 281, 16985–16990 (2006).

    Article  CAS  Google Scholar 

  29. Jafferany, M. Lithium and skin: dermatologic manifestations of lithium therapy. Int. J. Dermatol. 47, 1101–1111 (2008).

    Article  Google Scholar 

  30. del Fresno, C. et al. Inflammatory responses associated with acute coronary syndrome up-regulate IRAK-M and induce endotoxin tolerance in circulating monocytes. J. Endotoxin Res. 13, 39–52 (2007).

    Article  CAS  Google Scholar 

  31. Kawasaki, T. et al. Surgical stress induces endotoxin hyporesponsiveness and an early decrease of monocyte mCD14 and HLA-DR expression during surgery. Anesth. Analg. 92, 1322–1326 (2001).

    Article  CAS  Google Scholar 

  32. Langdale, L.A., Kajikawa, O., Frevert, C. & Liggitt, H.D. Sustained tolerance to lipopolysaccharide after liver ischemia-reperfusion injury. Shock 19, 553–558 (2003).

    Article  CAS  Google Scholar 

  33. Chen, J. & Ivashkiv, L.B. IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc. Natl. Acad. Sci. USA 107, 19438–19443 (2010).

    Article  CAS  Google Scholar 

  34. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  Google Scholar 

  35. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  36. Patel, S. et al. Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol. Cell. Biol. 28, 6314–6328 (2008).

    Article  CAS  Google Scholar 

  37. Werner, S.L. et al. Encoding NF-κB temporal control in response to TNF: distinct roles for the negative regulators IκBα and A20. Genes Dev. 22, 2093–2101 (2008).

    Article  CAS  Google Scholar 

  38. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol. 3, 69–75 (2002).

    Article  CAS  Google Scholar 

  39. Weinmann, A.S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat. Immunol. 2, 51–57 (2001).

    Article  CAS  Google Scholar 

  40. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  Google Scholar 

  41. Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  42. Christen, U. et al. A dual role for TNF-α in type 1 diabetes: islet-specific expression abrogates the ongoing autoimmune process when induced late but not early during pathogenesis. J. Immunol. 166, 7023–7032 (2001).

    Article  CAS  Google Scholar 

  43. Hassett, S., Moynagh, P. & Reen, D. TNF-α is a mediator of the anti-inflammatory response in a human neonatal model of the non-septic shock syndrome. Pediatr. Surg. Int. 22, 24–30 (2006).

    Article  CAS  Google Scholar 

  44. Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).

    Article  CAS  Google Scholar 

  45. Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  Google Scholar 

  46. Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    Article  CAS  Google Scholar 

  47. Natoli, G., Saccani, S., Bosisio, D. & Marazzi, I. Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nat. Immunol. 6, 439–445 (2005).

    Article  CAS  Google Scholar 

  48. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  CAS  Google Scholar 

  49. Yarilina, A. et al. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat. Immunol. 9, 378–387 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.D. Kalliolias and A. Yarilina for discussions and J. Woodgett (University of Toronto) for mice with loxP-flanked alleles encoding GSK3β. Supported by the National Institutes of Health (L.B.I.).

Author information

Authors and Affiliations

Authors

Contributions

S.H.P. designed and did experiments and wrote the manuscript; K.-H.P.-M. contributed to the signaling experiments; J.C. contributed to the restriction-enzyme accessibility experiments; X.H. contributed to the in vivo experiments; and L.B.I. designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Lionel B Ivashkiv.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 2777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Park-Min, KH., Chen, J. et al. Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nat Immunol 12, 607–615 (2011). https://doi.org/10.1038/ni.2043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing