Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The activating receptor NKp46 is essential for the development of type 1 diabetes

Abstract

The mechanism of action of natural killer (NK) cells in type 1 diabetes is still unknown. Here we show that the activating receptor NKp46 recognizes mouse and human ligands on pancreatic beta cells. NK cells appeared in the pancreas when insulitis progressed to type 1 diabetes, and NKp46 engagement by beta cells led to degranulation of NK cells. NKp46-deficient mice had less development of type 1 diabetes induced by injection of a low dose of streptozotocin. Injection of soluble NKp46 proteins into nonobese diabetic mice during the early phase of insulitis and the prediabetic stage prevented the development of type 1 diabetes. Our findings demonstrate that NKp46 is essential for the development of type 1 diabetes and highlight potential new therapeutic modalities for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NKp46 recognizes a ligand (or ligands) on beta cells.
Figure 2: NKp46-Ig recognizes mouse and human beta cells in situ.
Figure 3: NKp46-mediated killing of beta cells.
Figure 4: Impaired diabetes development in the absence of NKp46.
Figure 5: Appearance of NK cells in the pancreas during the development of diabetes.
Figure 6: Treatment with NKp46-Ig fusion proteins prevents the development of diabetes in NOD mice.
Figure 7: Impaired NKp46 function.
Figure 8: Treatment with NKp46 at a late prediabetic stage prevents the development of diabetes.

Similar content being viewed by others

References

  1. Delovitch, T.L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738 (1997).

    Article  CAS  Google Scholar 

  2. Kikutani, H. & Makino, S. The murine autoimmune diabetes model: NOD and related strains. Adv. Immunol. 51, 285–322 (1992).

    Article  CAS  Google Scholar 

  3. Like, A.A. & Rossini, A.A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417 (1976).

    Article  CAS  Google Scholar 

  4. O'Brien, B.A., Harmon, B.V., Cameron, D.P. & Allan, D.J. Beta-cell apoptosis is responsible for the development of IDDM in the multiple low-dose streptozotocin model. J. Pathol. 178, 176–181 (1996).

    Article  CAS  Google Scholar 

  5. Paik, S.G., Fleischer, N. & Shin, S.I. Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: obligatory role of cell-mediated autoimmune processes. Proc. Natl. Acad. Sci. USA 77, 6129–6133 (1980).

    Article  CAS  Google Scholar 

  6. Hutchings, P. et al. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 348, 639–642 (1990).

    Article  CAS  Google Scholar 

  7. Miyazaki, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 60, 622–630 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dotta, F. et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 104, 5115–5120 (2007).

    Article  CAS  Google Scholar 

  9. Rodacki, M. et al. Altered natural killer cells in type 1 diabetic patients. Diabetes 56, 177–185 (2007).

    Article  CAS  Google Scholar 

  10. Poirot, L., Benoist, C. & Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl. Acad. Sci. USA 101, 8102–8107 (2004).

    Article  CAS  Google Scholar 

  11. Alba, A. et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-β. Clin. Exp. Immunol. 151, 467–475 (2008).

    Article  CAS  Google Scholar 

  12. Flodstrom, M., Shi, F.D., Sarvetnick, N. & Ljunggren, H.G. The natural killer cell–friend or foe in autoimmune disease? Scand. J. Immunol. 55, 432–441 (2002).

    Article  CAS  Google Scholar 

  13. Hansson, M., Kiessling, R. & Andersson, B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur. J. Immunol. 11, 8–12 (1981).

    Article  CAS  Google Scholar 

  14. Nakamura, N. et al. Intrinsic cytotoxicity of natural killer cells to pancreatic islets in vitro. Diabetes 39, 836–843 (1990).

    Article  CAS  Google Scholar 

  15. Morse, R.H., Seguin, R., McCrea, E.L. & Antel, J.P. NK cell-mediated lysis of autologous human oligodendrocytes. J. Neuroimmunol. 116, 107–115 (2001).

    Article  CAS  Google Scholar 

  16. Karre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    Article  CAS  Google Scholar 

  17. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

    Article  CAS  Google Scholar 

  18. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    Article  CAS  Google Scholar 

  19. Moretta, L. Lymphocyte effector mechanisms in innate and adaptive immunity. Curr. Opin. Immunol. 17, 303–305 (2005).

    Article  CAS  Google Scholar 

  20. Satoh-Takayama, N. et al. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J. Immunol. 183, 6579–6587 (2009).

    Article  CAS  Google Scholar 

  21. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  Google Scholar 

  22. Maier, L.M. et al. NKG2D-RAE-1 receptor-ligand variation does not account for the NK cell defect in nonobese diabetic mice. J. Immunol. 181, 7073–7080 (2008).

    Article  CAS  Google Scholar 

  23. Moretta, A., Bottino, C., Mingari, M.C., Biassoni, R. & Moretta, L. What is a natural killer cell? Nat. Immunol. 3, 6–8 (2002).

    Article  CAS  Google Scholar 

  24. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  Google Scholar 

  25. Arnon, T.I. et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103, 664–672 (2004).

    Article  CAS  Google Scholar 

  26. Aktas, E., Kucuksezer, U.C., Bilgic, S., Erten, G. & Deniz, G. Relationship between CD107a expression and cytotoxic activity. Cell. Immunol. 254, 149–154 (2009).

    Article  CAS  Google Scholar 

  27. Alter, G., Malenfant, J.M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    Article  CAS  Google Scholar 

  28. Flodstrom, M., Tyrberg, B., Eizirik, D.L. & Sandler, S. Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. Diabetes 48, 706–713 (1999).

    Article  CAS  Google Scholar 

  29. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  Google Scholar 

  30. Halfteck, G.G. et al. Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J. Immunol. 182, 2221–2230 (2009).

    Article  CAS  Google Scholar 

  31. Kitagawa, Y. et al. Islet cells but not thyrocytes are susceptible to lysis by NK cells. J. Autoimmun. 4, 703–716 (1991).

    Article  CAS  Google Scholar 

  32. MacKay, P., Jacobson, J. & Rabinovitch, A. Spontaneous diabetes mellitus in the Bio-Breeding/Worcester rat. Evidence in vitro for natural killer cell lysis of islet cells. J. Clin. Invest. 77, 916–924 (1986).

    Article  CAS  Google Scholar 

  33. Foulis, A.K., McGill, M., Farquharson, M.A. & Hilton, D.A. A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM. Diabetologia 40, 53–61 (1997).

    Article  CAS  Google Scholar 

  34. Horwitz, M.S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 4, 781–785 (1998).

    Article  CAS  Google Scholar 

  35. Lodde, B.M. et al. NOD mouse model for Sjogren's syndrome: lack of longitudinal stability. Oral Dis. 12, 566–572 (2006).

    Article  CAS  Google Scholar 

  36. Matsumoto, S. et al. Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells 9, 176–190 (2007).

    Article  CAS  Google Scholar 

  37. Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Pikarsky for help and advice; E. Horowitz for assistance; members of the Mandelboim laboratory for discussions and the Physician Research Program of Hadassah Hospital for assistance. Supported by the Juvenile Diabetes Research Foundation (O.M.), the Israel Science Foundation (Morasha grant to C.G.) and the Leifermann Foundation (Y.N.).

Author information

Authors and Affiliations

Authors

Contributions

C.G. designed all experiments, did all experiments, analyzed the data and wrote the manuscript; A.P. made the initial observation that NKp46 recognizes beta cells and supervised the project; M.E., R.G., S.M., N.S.-G., H.A., H.G., T.N., O.H. and M.M. contributed reagents; Y.D. provided guidance and reagents; V.D. helped in the immunohistochemical experiments and in determining the insulitis scoring; Y.N. supervised the project and contributed reagents; and O.M. supervised the entire project and analyzed the data, and all experiments were done in the O.M. laboratory under the guidance of O.M.

Corresponding authors

Correspondence to Angel Porgador or Ofer Mandelboim.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 194 kb)

Supplementary Movie 1

Early PBS treated group. (WMV 3016 kb)

Supplementary Movie 2

Early NKp46 treated group. (WMV 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gur, C., Porgador, A., Elboim, M. et al. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11, 121–128 (2010). https://doi.org/10.1038/ni.1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing