Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria

Abstract

Cell-autonomous innate immune responses against bacteria attempting to colonize the cytosol of mammalian cells are incompletely understood. Polyubiquitylated proteins can accumulate on the surface of such bacteria, and bacterial growth is restricted by Tank-binding kinase (TBK1). Here we show that NDP52, not previously known to contribute to innate immunity, recognizes ubiquitin-coated Salmonella enterica in human cells and, by binding the adaptor proteins Nap1 and Sintbad, recruits TBK1. Knockdown of NDP52 and TBK1 facilitated bacterial proliferation and increased the number of cells containing ubiquitin-coated salmonella. NDP52 also recruited LC3, an autophagosomal marker, and knockdown of NDP52 impaired autophagy of salmonella. We conclude that human cells utilize the ubiquitin system and NDP52 to activate autophagy against bacteria attempting to colonize their cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TBK1 adaptor Nap1 is recruited to ubiquitin-coated S. Typhimurium and binds ubiquitin indirectly.
Figure 2: NDP52, a ubiquitin-binding component of TBK1 complexes.
Figure 3: Ubiquitin-coated S. Typhimurium recruit NDP52.
Figure 4: NDP52 senses the bacterial ubiquitin coat.
Figure 5: S. Typhimurium recruits NDP52-containing TBK1 complexes.
Figure 6: NDP52 and TBK1 restrict growth of S. Typhimurium.
Figure 7: NDP52 binds LC3 and recruits ubiquitin-coated S. Typhimurium into autophagosomes.

Similar content being viewed by others

References

  1. Coburn, B., Grassl, G.A. & Finlay, B.B. Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85, 112–118 (2007).

    Article  Google Scholar 

  2. Haraga, A., Ohlson, M.B. & Miller, S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53–66 (2008).

    Article  CAS  Google Scholar 

  3. McGhie, E.J., Brawn, L.C., Hume, P.J., Humphreys, D. & Koronakis, V. Salmonella takes control: effector-driven manipulation of the host. Curr. Opin. Microbiol. 12, 117–124 (2009).

    Article  CAS  Google Scholar 

  4. Perrin, A.J., Jiang, X., Birmingham, C.L., So, N.S. & Brumell, J.H. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14, 806–811 (2004).

    Article  CAS  Google Scholar 

  5. Radtke, A.L., Delbridge, L.M., Balachandran, S., Barber, G.N. & O'Riordan, M.X. TBK1 protects vacuolar integrity during intracellular bacterial infection. PLoS Pathog. 3, e29 (2007).

    Article  Google Scholar 

  6. Radtke, A.L. & O'Riordan, M.X. Homeostatic maintenance of pathogen-containing vacuoles requires TBK1-dependent regulation of aquaporin-1. Cell. Microbiol. 10, 2197–2207 (2008).

    Article  CAS  Google Scholar 

  7. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  8. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    Article  CAS  Google Scholar 

  9. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101, 233–238 (2004).

    Article  CAS  Google Scholar 

  10. Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  Google Scholar 

  11. Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M. & Ashwell, J.D. NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-κB activation. Nat. Cell Biol. 8, 398–406 (2006).

    Article  CAS  Google Scholar 

  12. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  Google Scholar 

  13. Bloor, S. et al. Signal processing by its coil zipper domain activates IKK gamma. Proc. Natl. Acad. Sci. USA 105, 1279–1284 (2008).

    Article  CAS  Google Scholar 

  14. Lo, Y.C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602–615 (2009).

    Article  CAS  Google Scholar 

  15. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  Google Scholar 

  16. Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T. & Brumell, J.H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    Article  CAS  Google Scholar 

  17. Pomerantz, J.L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article  CAS  Google Scholar 

  18. Fujita, F. et al. Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling. Mol. Cell. Biol. 23, 7780–7793 (2003).

    Article  CAS  Google Scholar 

  19. Bouwmeester, T. et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    Article  CAS  Google Scholar 

  20. Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26, 3180–3190 (2007).

    Article  CAS  Google Scholar 

  21. Sasai, M. et al. Cutting Edge: NF-κB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J. Immunol. 174, 27–30 (2005).

    Article  CAS  Google Scholar 

  22. Sasai, M. et al. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J. Immunol. 177, 8676–8683 (2006).

    Article  CAS  Google Scholar 

  23. Guo, B. & Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282, 11817–11826 (2007).

    Article  CAS  Google Scholar 

  24. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  Google Scholar 

  25. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600 (2007).

    Article  CAS  Google Scholar 

  26. Morton, S., Hesson, L., Peggie, M. & Cohen, P. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582, 997–1002 (2008).

    Article  CAS  Google Scholar 

  27. Korioth, F., Gieffers, C., Maul, G.G. & Frey, J. Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J. Cell Biol. 130, 1–13 (1995).

    Article  CAS  Google Scholar 

  28. Sternsdorf, T., Jensen, K., Zuchner, D. & Will, H. Cellular localization, expression, and structure of the nuclear dot protein 52. J. Cell Biol. 138, 435–448 (1997).

    Article  CAS  Google Scholar 

  29. Morriswood, B. et al. T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion. J. Cell Sci. 120, 2574–2585 (2007).

    Article  CAS  Google Scholar 

  30. Gurung, R. et al. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J. Biol. Chem. 278, 11376–11385 (2003).

    Article  CAS  Google Scholar 

  31. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  Google Scholar 

  32. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    Article  CAS  Google Scholar 

  33. Ray, K., Marteyn, B., Sansonetti, P.J. & Tang, C.M. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340 (2009).

    Article  CAS  Google Scholar 

  34. Virgin, H.W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009).

    Article  CAS  Google Scholar 

  35. Bielecki, J., Youngman, P., Connelly, P. & Portnoy, D.A. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–176 (1990).

    Article  CAS  Google Scholar 

  36. Goetz, M. et al. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. USA 98, 12221–12226 (2001).

    Article  CAS  Google Scholar 

  37. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  Google Scholar 

  38. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  Google Scholar 

  39. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat. Immunol. 9, 908–916 (2008).

    Article  CAS  Google Scholar 

  40. Hiemstra, P.S., van den Barselaar, M.T., Roest, M., Nibbering, P.H. & van Furth, R. Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J. Leukoc. Biol. 66, 423–428 (1999).

    Article  CAS  Google Scholar 

  41. Beuzon, C.R., Salcedo, S.P. & Holden, D.W. Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705–2715 (2002).

    Article  CAS  Google Scholar 

  42. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  Google Scholar 

  43. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  Google Scholar 

  44. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  45. Kirkin, V., Lamark, T., Johansen, T. & Dikic, I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5, 732–733 (2009).

    Article  CAS  Google Scholar 

  46. Puls, A., Schmidt, S., Grawe, F. & Stabel, S. Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc. Natl. Acad. Sci. USA 94, 6191–6196 (1997).

    Article  CAS  Google Scholar 

  47. Sanchez, P., De Carcer, G., Sandoval, I.V., Moscat, J. & Diaz-Meco, M.T. Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol. Cell. Biol. 18, 3069–3080 (1998).

    Article  CAS  Google Scholar 

  48. Randow, F. & Sale, J.E. Retroviral transduction of DT40. Subcell. Biochem. 40, 383–386 (2006).

    Article  Google Scholar 

  49. Randow, F. & Seed, B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat. Cell Biol. 3, 891–896 (2001).

    Article  CAS  Google Scholar 

  50. Krumbach, R., Bloor, S., Ryzhakov, G. & Randow, F. Somatic cell genetics for the study of NF-κB signaling in innate immunity. Science Signaling 1, part 7 2008.

Download references

Acknowledgements

We thank F. Begum and S.-Y. Peak-Chew for mass spectrometry, J. Kendrick-Jones (Medical Research Council Laboratory of Molecular Biology) for NDP52 antiserum, D. Holden (Imperial College London), C. Tang (Imperial College London), S. Sriskandan (Imperial College London) and C. Bryant (University of Cambridge) for bacterial strains and advice, A. Geerlof (European Molecular Biology Laboratory Heidelberg) for pETM plasmid, and D. Fearon, P. Lehner and D. Komander for comments.

Author information

Authors and Affiliations

Authors

Contributions

T.L.M.T., G.R., S.B. and N.v.M. performed experiments and analyzed data. F.R. designed the overall research and wrote the manuscript.

Corresponding author

Correspondence to Felix Randow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 2494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurston, T., Ryzhakov, G., Bloor, S. et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10, 1215–1221 (2009). https://doi.org/10.1038/ni.1800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing