Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function

A Corrigendum to this article was published on 01 June 2009

This article has been updated

Abstract

CD40, a costimulatory molecule expressed on macrophages, induces expression of interleukin 12 (IL-12) in uninfected macrophages and IL-10 in macrophages infected with Leishmania major. IL-12 suppresses, whereas IL-10 enhances, L. major infection. The mechanisms that regulate this difference in CD40-induced cytokine production remain unclear, but it is known that L. major depletes cholesterol. Here we show that cholesterol influenced the assembly of distinct CD40 signalosomes. Depletion of membrane cholesterol inhibited the assembly of an IL-12-inducing CD40 signalosome containing the adaptors TRAF2, TRAF3 and TRAF5 and the kinase Lyn and promoted the assembly of an IL-10-inducing CD40 signalosome containing the adaptor TRAF6 and the kinase Syk. Thus, cholesterol depletion might represent an immune-evasion strategy used by L. major.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholesterol depletion impairs CD40-induced phosphorylation of p38 and its associated effector functions but augments Erk1/2 phosphorylation and its associated effector functions in uninfected and L. major–infected macrophages.
Figure 2: CD40-induced phosphorylation of p38 and Erk1/2 is modulated by membrane localization, cholesterol and L. major infection.
Figure 3: TRAF proteins associate with CD40 in different ways in detergent-resistant and detergent-soluble fractions.
Figure 4: Cholesterol influences anti-leishmanial functions.
Figure 5: Loss of the protective influence of mevalonate in CD40-deficient mice.
Figure 6: TRAF6 expression suppresses anti-leishmanial immunity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 18 May 2009

    NOTE: In the version of this article initially published, the GenBank accession number for the Indian human immunodeficiency virus 2 isolate is incorrect. The correct accession number is DQ307022. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Li, L., Elliott, J.F. & Mosmann, T.R. IL-10 inhibits cytokine production, vascular leakage, and swelling during T helper 1 cell-induced delayed-type hypersensitivity. J. Immunol. 153, 3967–3978 (1994).

    CAS  PubMed  Google Scholar 

  2. Snapper, C.M. & Paul, W.E. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Mond, J.J., Carman, J., Sarma, C., Ohara, J. & Finkelman, F.D. Interferon-γ suppresses B cell stimulation factor (BSF-1) induction of class II MHC determinants on B cells. J. Immunol. 137, 3534–3537 (1986).

    CAS  PubMed  Google Scholar 

  4. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Grammer, A.C. & Lipsky, P.E. CD40-mediated regulation of immune responses by TRAF-dependent and TRAF-independent signaling mechanisms. Adv. Immunol. 76, 61–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Bishop, G.A., Moore, C.R., Xie, P., Stunz, L.L. & Kraus, Z.J. TRAF proteins in CD40 signaling. Adv. Exp. Med. Biol. 597, 131–151 (2007).

    Article  PubMed  Google Scholar 

  8. Bishop, G.A., Hostager, B.S. & Brown, K.D. Mechanisms of TNF receptor-associated factor (TRAF) regulation in B lymphocytes. J. Leukoc. Biol. 72, 19–23 (2002).

    CAS  PubMed  Google Scholar 

  9. Kamanaka, M. et al. Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4, 275–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Soong, L. et al. Disruption of CD40–CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4, 263–273 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, K.A. et al. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 4, 283–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Mathur, R.K., Awasthi, A., Wadhone, P., Ramanamurthy, B. & Saha, B. Reciprocal CD40 signals through p38MAPK and Erk-1/2 induce counteracting immune responses. Nat. Med. 10, 540–544 (2004); erratum in Nat. Med. 10, 755 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Chakraborty, D. et al. Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. J. Immunol. 175, 3214–3224 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Vidalain, P.O. et al. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 19, 3304–3313 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hancock, J.F. & Patron, R.G. Ras plasma membrane signaling platforms. Biochem. J. 389, 1–11 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolau, D.V. Jr., Burrage, K., Parton, R.G. & Hancock, J.F. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell. Biol. 26, 313–323 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pontier, S.M. et al. Cholesterol-dependent separation of the β2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J. Biol. Chem. 283, 24659–24672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frank, C. et al. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp. Neurol. 212, 407–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Pucadyil, T.J. & Chattopadhyay, A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin (1A) receptor in the plasma membrane of living cells. Biochim. Biophys. Acta 1768, 655–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Xia, M. et al. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution. Arterioscler. Thromb. Vasc. Biol. 27, 519–524 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. McConnell, H.M. & Radhakrishnan, A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. McConnell, H.M. & Vrljic, M. Liquid–liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32, 469–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, J. & Feigenson, G.W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76, 2142–2157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pandit, S.A., Jakobsson, E. & Scott, H.L. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys. J. 87, 3312–3322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ipsen, J.H. et al. Phase equilibria in the phosphatidylcholine–cholesterol system. Biochim. Biophys. Acta 905, 162–172 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Pullen, S.S. et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry 38, 10168–10177 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Awasthi, A. et al. CD40 signaling is impaired in L. major-infected macrophages and is rescued by a p38MAPK activator establishing a host-protective memory T cell response. J. Exp. Med. 197, 1037–1043 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pullen, S.S. et al. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 37, 11836–11845 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sefton, B.M. & Taddie, J.A. Role of tyrosine kinases in lymphocyte activation. Curr. Opin. Immunol. 6, 372–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Waiczies, S. et al. Atorvastatin induces T cell anergy via phosphorylation of ERK1. J. Immunol. 174, 5630–5635 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Gegg, M.E. et al. Suppression of autoimmune retinal disease by lovastatin does not require Th2 cytokine induction. J. Immunol. 174, 2327–2335 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Murugaiyan, G., Agrawal, R., Mishra, G.C., Mitra, D. & Saha, B. Functional dichotomy in CD40 reciprocally regulates effector T cell functions. J. Immunol. 177, 6642–6649 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Murugaiyan, G., Agrawal, R., Mishra, G.C., Mitra, D. & Saha, B. Differential CD40/CD40L expression results in counteracting anti-tumor immune responses. J. Immunol. 178, 2047–2055 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Toubi, E. & Shoenfeld, Y. The role of CD40–CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37, 457–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Quezada, S.A., Jarvinen, L.Z., Lind, E.F. & Noelle, R.J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, A. & Sayegh, M.H. The CD154–CD40 costimulatory pathway in transplantation. Transplantation 73, S36–S39 (2002).

    Article  CAS  Google Scholar 

  38. Lichtenberg, D., Goni, F.M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Veiga, M.P. et al. Interaction of cholesterol and sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40, 2614–2622 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Scheiffele, P. et al. Interaction of influenza virus haemagglutinin with sphingolipid–cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bock, J. & Gulbins, E. The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett. 534, 169–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Guigas, G. & Weiss, M. Influence of hydrophobic mismatching on membrane protein diffusion. Biophys. J. 95, L25–L27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Groux, H. et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723–1729 (1999).

    CAS  PubMed  Google Scholar 

  44. Hagenbaugh, A. et al. Altered immune responses in interleukin 10 transgenic mice. J. Exp. Med. 185, 2101–2110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  47. Lal, C.S. et al. Hypocholesterolemia and increased triglyceride in pediatric visceral leishmaniasis. Clin. Chim. Acta 382, 151–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Shrivastava, S. & Chattopadhyay, A. Influence of cholesterol and ergosterol on membrane dynamics using fluorescent probes. Biochem. Biophys. Res. Commun. 356, 705–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Ni, C.Z. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl. Acad. Sci. USA. 97, 10395–10399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. London, E. & Brown, D.A. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508, 182–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Hostager, B.S. et al. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J. Biol. Chem. 275, 15392–15398 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Nishitsuji, H. et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect. 6, 76–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Santhosh, C.V., Tamhane, M.C., Kamat, R.H., Patel, V.V. & Mukhopadhyaya, R. A Lentiviral vector with novel multiple cloning sites: stable transgene expression in vitro and in vivo. Biochem. Biophys. Res. Commun. 371, 546–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Gupta, S., Boppana, R., Mishra, G.C., Saha, B. & Mitra, D. HIV-1 Tat suppresses gp120-specific T cell response in IL-10-dependent manner. J. Immunol. 180, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anti-CD40 was from G. Klaus (National Institute of Medical Research). Supported by the Department of Biotechnology, New Delhi; the Government of India; Centre Franco-Indien pour la Promotion de la Recherche Avancée, New Delhi; and the Council of Scientific and Industrial Research, New Delhi (A.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.R. and R.D., all fractionation studies; A.R. and M.J., in vivo experiments; R.K. and S.C., shRNA vector and virus preparation; and S.M., R.M. and B.S., manuscript preparation.

Corresponding author

Correspondence to Bhaskar Saha.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–2 (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rub, A., Dey, R., Jadhav, M. et al. Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat Immunol 10, 273–280 (2009). https://doi.org/10.1038/ni.1705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing