Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The impact of remineralization depth on the air–sea carbon balance

Abstract

As particulate organic carbon rains down from the surface ocean it is respired back to carbon dioxide and released into the ocean’s interior. The depth at which this sinking carbon is converted back to carbon dioxide—known as the remineralization depth—depends on the balance between particle sinking speeds and their rate of decay. A host of climate-sensitive factors can affect this balance, including temperature1, oxygen concentration2, stratification, community composition3,4 and the mineral content of the sinking particles5. Here we use a three-dimensional global ocean biogeochemistry model to show that a modest change in remineralization depth can have a substantial impact on atmospheric carbon dioxide concentrations. For example, when the depth at which 63% of sinking carbon is respired increases by 24 m globally, atmospheric carbon dioxide concentrations fall by 10–27 ppm. This reduction in atmospheric carbon dioxide concentration results from the redistribution of remineralized carbon from intermediate waters to bottom waters. As a consequence of the reduced concentration of respired carbon in upper ocean waters, atmospheric carbon dioxide is preferentially stored in newly formed North Atlantic Deep Water. We suggest that atmospheric carbon dioxide concentrations are highly sensitive to the potential changes in remineralization depth that may be caused by climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The response of the PO4 distribution to an increase in remineralization depth.
Figure 2: Sensitivities to changes in remineralization depth.
Figure 3: The DIC response decomposed into soft-tissue, carbonate and gas-exchange pump components.
Figure 4: The alkalinity response decomposed into soft-tissue and carbonate pump components.

Similar content being viewed by others

References

  1. Matsumoto, K. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophys. Res. Lett. 34, L20605 (2007).

    Article  Google Scholar 

  2. Devol, A. H. & Hartnett, H. E. Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46, 1648–1690 (2001).

    Article  Google Scholar 

  3. Klaas, C. & Archer, D. E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob. Biogeochem. Cycles 16, 1116 (2002).

    Article  Google Scholar 

  4. Francois, R., Honjo, S., Krishfield, R. & Manganini, S. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Glob. Biogeochem. Cycles 16, 1087 (2002).

    Google Scholar 

  5. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49, 219–236 (2001).

    Article  Google Scholar 

  6. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  Google Scholar 

  7. Yamanaka, Y. & Tajika, E. The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: Studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles 10, 361–382 (1996).

    Article  Google Scholar 

  8. Kwon, E. Y. & Primeau, F. Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data. J. Geophys. Res. 113, C08011 (2008).

    Article  Google Scholar 

  9. Kwon, E. Y. & Primeau, F. Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data. Glob. Biogeochem. Cycles 20, GB4009 (2006).

    Article  Google Scholar 

  10. Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    Article  Google Scholar 

  11. Berelson, W. POC fluxes into the ocean interior: A comparison of 4 US-JGOFS regional studies. Oceanography 14, 59–67 (2001).

    Article  Google Scholar 

  12. Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

    Article  Google Scholar 

  13. Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem. Cycles 16, 1037 (2002).

    Article  Google Scholar 

  14. Conte, M., Ralph, N. & Ross, E. H. Seasonal and interannual variability in deep ocean particle fluxes at the oceanic flux program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II 48, 1471–1505 (2001).

    Article  Google Scholar 

  15. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    Article  Google Scholar 

  16. Broecker, W. S. The great ocean conveyor. Oceanography 4, 89–89 (1991).

    Google Scholar 

  17. Williams, R. G., Roussenov, V. & Follows, M. J. Nutrient streams and their induction into the mixed layer. Glob. Biogeochem. Cycles 20, GB1016 (2006).

    Article  Google Scholar 

  18. Primeau, F. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr. 35, 545–564 (2005).

    Article  Google Scholar 

  19. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839 (2005).

    Article  Google Scholar 

  20. Marinov, I., Follows, M. J., Gnandesikan, A., Sarmiento, J. L. & Slater, R. D. How does ocean biology affect atmospheric pCO2? Theory and models. J. Geophys. Res. 113, C07032 (2008).

    Article  Google Scholar 

  21. Gruber, N. & Sarmiento, J. L. in The Sea (eds Robinson, A. R., McCarthy, J. J. & Rothschild, B. J.) 337–399 (Wiley, 2002).

    Google Scholar 

  22. Marinov, I., Gnanadesikan, A., Toggweiler, I & Sarmiento, J. L. The southern ocean biogeochemical divide. Nature 441, 964–967 (2006).

    Article  Google Scholar 

  23. Boyle, E. A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–56 (1988).

    Article  Google Scholar 

  24. Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2008).

    Article  Google Scholar 

  25. Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, Q12003 (2006).

    Google Scholar 

  26. Mahowald, N. et al. Dust sources and deposition during the Last Glacial Maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104, 15895–15916 (1999).

    Article  Google Scholar 

  27. Sigman, D. M., McCorkle, D. C. & Martin, W. R. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12, 409–427 (1998).

    Article  Google Scholar 

  28. Archer, D., Winguth, A., Lea, D. & Mahowald, N. What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys. 38, 159–189 (2000).

    Article  Google Scholar 

  29. Najjar, R. G. et al. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from phase II of the ocean carbon-cycle model intercomparison project (OCMIP-2). Glob. Biogeochem. Cycles 21, GB3007 (2007).

    Article  Google Scholar 

  30. Brewer, P. G., Wong, G. T. F., Bacon, M. P. & Spencer, D. W. An oceanic calcium problem? Earth Planet. Sci. Lett. 26, 81–87 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Galbraith and R. Toggweiler for their valuable comments. F.P. acknowledges support from National Science Foundation grant OCE 0623647. E.Y.K. and J.L.S. acknowledge award NA07OAR4310096 from the National Oceanic and Atmospheric Administration, US Department of Commerce. The statements, findings, conclusions and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the US Department of Commerce.

Author information

Authors and Affiliations

Authors

Contributions

E.Y.K. and F.P. initiated the project. E.Y.K. carried out model simulations and analyses with advice from F.P. and J.L.S. E.Y.K. wrote the paper and the Supplementary Information with input from F.P. and J.L.S.

Corresponding author

Correspondence to Eun Young Kwon.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, E., Primeau, F. & Sarmiento, J. The impact of remineralization depth on the air–sea carbon balance. Nature Geosci 2, 630–635 (2009). https://doi.org/10.1038/ngeo612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing