Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

Abstract

The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period1,2, and the Triassic–Jurassic plate tectonic evolution of the Panthalassa Ocean remains largely unresolved3,4. Geological clues come from extinct intra-oceanic volcanic arcs that formed above ancient subduction zones, but have since been accreted to the North American and Asian continental margins4. Here we compile data on the composition, the timing of formation and accretion, and the present-day locations of these volcanic arcs and show that intra-oceanic subduction zones must have once been situated in a central Panthalassa location in our plate tectonic reconstructions5,6,7. To constrain the palaeoposition of the extinct arcs, we correlate them with remnants of subducted slabs that have been identified in the mantle using seismic-wave tomographic models8,9. We suggest that a series of subduction zones, together called Telkhinia, may have defined two separate palaeo-oceanic plate systems—the Pontus and Thalassa oceans. Our reconstruction provides constraints on the palaeolongitude and tectonic evolution of the Telkhinia subduction zones and Panthalassa Ocean that are crucial for global plate tectonic reconstructions and models of mantle dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Present understanding of the Panthalassa Ocean.
Figure 2: Tomographic slices.
Figure 3: Comparison of tomographic models.
Figure 4: Plate tectonic interpretation of tomography.

Similar content being viewed by others

References

  1. Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific Basin. Geol. Soc. Am. Spec. Pap. 206, 1–59 (1985).

    Google Scholar 

  2. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  3. Nur, A. & Ben-Avraham, Z. Lost Pacifica continent. Nature 270, 41–43 (1977).

    Article  Google Scholar 

  4. Nokleberg, W. J. et al. Phanerozoic tectonic evolution of the circum-north Pacific. USGS Prof. Pap. 1626, 1–122 (2000).

    Google Scholar 

  5. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: Toward a unified model. Rev. Geophys. 46, 1–44 (2008).

    Article  Google Scholar 

  6. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–624 (2008).

    Article  Google Scholar 

  7. van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3, 36–40 (2010).

    Article  Google Scholar 

  8. Amaru, M. L. Global Travel Time Tomography with 3-D Reference Models PhD thesis, Utrecht Univ. (2007).

  9. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  10. Isozaki, Y., Maruyama, S. & Furuoka, F. Accreted oceanic materials in Japan. Tectonophysics 181, 179–205 (1990).

    Article  Google Scholar 

  11. Shi, G. R. The marine Permian of east and northeast Asia: An overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. J. Asian Earth Sci. 26, 175–206 (2006).

    Article  Google Scholar 

  12. Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297–307 (2007).

    Article  Google Scholar 

  13. Ueda, H. & Miyashita, S. Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. Island Arc 14, 582–598 (2005).

    Article  Google Scholar 

  14. Stone, D. B., Minyuk, P. & Kolosev, E. New paleomagnetic paleolatitudes for the Omulevka terrane of northeast Russia: A comparison with the Omolon terrane and the eastern Siberian platform. Tectonophysics 377, 55–82 (2003).

    Article  Google Scholar 

  15. Oxman, V. S. Tectonic evolution of the Mesozoic Verkhoyansk–Kolyma belt (NE Asia). Tectonophysics 365, 45–76 (2003).

    Article  Google Scholar 

  16. Harbert, W. et al. Reconnaissance paleomagnetism of Late Triassic blocks, Kuyul region, northern Kamchatka Peninsula, Russia. Tectonophysics 361, 215–227 (2003).

    Article  Google Scholar 

  17. Filatova, N. I. & Vishnevskaya, V. S. Radiolarian stratigraphy and origin of the Mesozoic terranes of the continental framework of the northwestern Pacific (Russia). Tectonophysics 269, 131–150 (1997).

    Article  Google Scholar 

  18. Kent, D. V. & Irving, E. Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. J. Geophys. Res. 115, B10103 (2010).

    Article  Google Scholar 

  19. Oda, H. & Suzuki, H. Paleomagnetism of Triassic and Jurassic red bedded chert of the Inuyama area, central Japan. J. Geophys. Res. 105, 25743–25767 (2000).

    Article  Google Scholar 

  20. Uno, K., Furukawa, K. & Hada, S. Margin-parallel translation in the western Pacific: Paleomagnetic evidence from an allochthonous terrane in Japan. Earth Planet. Sci. Lett. 303, 153–161 (2011).

    Article  Google Scholar 

  21. Matsuoka, A. Late Jurassic tropical Radiolaria: Vallupus and its related forms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 119, 359–369 (1996).

    Article  Google Scholar 

  22. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  23. van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246–249 (1999).

    Article  Google Scholar 

  24. Lithgow-Bertollini, C. & Silver, P. G. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272 (1998).

    Article  Google Scholar 

  25. Steinberger, B. Slabs in the lower mantle—results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Int. 118, 241–257 (2000).

    Article  Google Scholar 

  26. Kaneshima, S. & Helffrich, G. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Phys. Earth Planet. Int. 183, 91–103 (2010).

    Article  Google Scholar 

  27. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  Google Scholar 

  28. He, Y. & Wen, L. Structural features and shear-velocity structure of the Pacific Anomaly. J. Geophys. Res. 114, B02309 (2009).

    Google Scholar 

  29. Grand, S., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  30. Dickinson, W. R. & Lawton, T. F. Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol. Soc. Am. Bull. 113, 1142–1160 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

D.G.v.d.M. thanks the Geological Survey of Norway for its hospitality during his sabbatical, D. Stone for the discussions on regional geology and P. Cawood, L. Liu and J. B. Murphy for reviews. Part of this work was conducted under programmes of the Vening Meinesz School of Geodynamics (Utrecht University) and the Netherlands Research Centre of Integrated Solid Earth Sciences. T.H.T. and D.J.J.v.H. acknowledge financial support from Statoil (SPlates Model project). T.H.T. acknowledges the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Grant Agreement Number 267631 (Beyond Plate Tectonics). This paper contributes to the ESF EUROCORES programme TOPO-EUROPE.

Author information

Authors and Affiliations

Authors

Contributions

D.G.v.d.M. carried out the slab identification and plate tectonic reconstruction modifications. W.S. co-developed the tomographic model. T.H.T. provided the plate tectonic reconstructions. D.J.J.v.H. provided integration between surface geology, orogenesis and subduction. M.L.A. developed the tomographic model as part of her PhD work at Utrecht University. All authors shared in writing the article.

Corresponding authors

Correspondence to D. G. van der Meer or W. Spakman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2122 kb)

Supplementary Movies

Supplementary Movies (MOV 4884 kb)

Supplementary Information

Supplementary Movies (MOV 2966 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Meer, D., Torsvik, T., Spakman, W. et al. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geosci 5, 215–219 (2012). https://doi.org/10.1038/ngeo1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing