Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconciling the hemispherical structure of Earth’s inner core with its super-rotation

Abstract

Earth’s solid inner core grows through solidification of material from the fluid outer core onto its surface at rates of about 1 mm per year1, freezing in core properties over time and generating an age–depth relation for the inner core. A hemispherical structure of the inner core is well-documented: an isotropic eastern hemisphere with fast seismic velocities contrasts with a slower, anisotropic western hemisphere2,3,4. Independently, the inner core is reported to super-rotate at rates of up to 1° per year5,6,7. Considering the slow growth, steady rotation rates of this magnitude would erase ’frozen-in’ regional variation and cannot coexist with hemispherical structure. Here, we exploit the age–depth relation, using the largest available PKIKP–PKiKP seismic travel time data set, to confirm hemispherical structure in the uppermost inner core, and to constrain the locations of the hemisphere boundaries. We find consistent eastward displacement of these boundaries with depth, from which we infer extremely slow steady inner core super-rotation of 0.1°–1° per million years. Our estimate of long-term super-rotation reconciles inner core rotation with hemispherical structure, two properties previously thought incompatible. It is in excellent agreement with geodynamo simulations8,9, while not excluding the possibility that the much larger rotation rates inferred earlier5,6,7 correspond to fluctuations in inner core rotation on shorter timescales10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ray paths, travel time curves and an example of the seismic phases PKIKP and PKiKP.
Figure 2: Map showing all PKIKP–PKiKP differential travel time residual data collected.
Figure 3: PKIKP–PKiKP differential travel time residuals as a function of PKIKP turning point longitude, separated according to PKIKP turning depth.

Similar content being viewed by others

References

  1. Jacobs, J. The Earth’s inner core. Nature 172, 297–298 (1953).

    Article  Google Scholar 

  2. Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)–PKP(DF) times. J. Geophys. Res. 102, 2925–2938 (1997).

    Article  Google Scholar 

  3. Cao, A. & Romanowicz, B. Hemispherical transition of seismic attenuation at the top of the Earth’s inner core. Earth Planet. Sci. Lett. 228, 243–253 (2004).

    Article  Google Scholar 

  4. Deuss, A., Irving, J. & Woodhouse, J. Regional variation of inner core anisotropy from seismic normal mode observations. Science 328, 1018–1020 (2010).

    Article  Google Scholar 

  5. Song, X. & Richards, P. Seismological evidence for differential rotation of the Earth’s inner core. Nature 382, 221–224 (1996).

    Article  Google Scholar 

  6. Wen, L. Localized temporal change of the Earth’s inner core boundary. Science 314, 967–970 (2006).

    Article  Google Scholar 

  7. Cao, A., Masson, Y. & Romanowicz, B. Short wavelength topography on the inner-core boundary. Proc. Natl Acad. Sci. USA 104, 31–35 (2007).

    Article  Google Scholar 

  8. Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–762 (2008).

    Article  Google Scholar 

  9. Aubert, J. & Dumberry, M. Steady and fluctuating inner core rotation in numerical geodynamo models. Geophys. J. Int. 183, 162–170 (2010).

    Google Scholar 

  10. Dumberry, M. & Mound, J. Inner core–mantle gravitational locking and the super-rotation of the inner core. Geophys. J. Int. 181, 806–817 (2010).

    Google Scholar 

  11. Lehmann, I. Inner Earth. Bur. Cent. Seismol. Int. 14, 3–31 (1936).

    Google Scholar 

  12. Monnereau, M., Calvet, M., Margerin, L. & Souriau, A. Lopsided growth of Earth’s inner core. Science 328, 1014–1017 (2010).

    Article  Google Scholar 

  13. Alboussiere, T., Deguen, R. & Melzani, M. Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466, 744–747 (2010).

    Article  Google Scholar 

  14. Garcia, R. & Souriau, A. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett. 27, 3121–3124 (2000).

    Article  Google Scholar 

  15. Ouzounis, A. & Creager, K. Isotropy overlying anisotropy at the top of the inner core. Geophys. Res. Lett. 28, 4331–4334 (2001).

    Article  Google Scholar 

  16. Poupinet, G., Pillet, R. & Souriau, A. Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature 305, 204–206 (1983).

    Article  Google Scholar 

  17. Morelli, A., Dziewonski, A. & Woodhouse, J. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett. 13, 1545–1548 (1986).

    Article  Google Scholar 

  18. Woodhouse, J., Giardini, D. & Li, X. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett. 13, 1549–1552 (1986).

    Article  Google Scholar 

  19. Song, X. & Helmberger, D. Depth dependence of anisotropy of Earth’s inner core. J. Geophys. Res. 100, 9805–9816 (1995).

    Article  Google Scholar 

  20. Shearer, P. Constraints on inner core anisotropy from PKP(DF) travel times. J. Geophys. Res. 99, 19647–19659 (1994).

    Article  Google Scholar 

  21. Creager, K. Large-scale variations in inner core anisotropy. J. Geophys. Res. 104, 23127–23139 (1999).

    Article  Google Scholar 

  22. Niu, F. & Wen, L. Hemispherical variations in seismic velocity at the top of the Earth’s inner core. Nature 410, 1081–1084 (2001).

    Article  Google Scholar 

  23. Oreshin, S. & Vinnick, L. Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophys. Res. Lett. 31, L02613 (2004).

    Article  Google Scholar 

  24. Kennett, B., Engdahl, E. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article  Google Scholar 

  25. Buffett, B., Huppert, H., Lister, J. & Woods, A. Analytical model for solidification of the Earth’s core. Nature 356, 329–331 (1992).

    Article  Google Scholar 

  26. Labrosse, S., Poirier, J. & Le Moüel, J. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001).

    Article  Google Scholar 

  27. Vidale, J. E., Dodge, D. A. & Earle, P. S. Slow differential rotation of the Earth’s inner core indicated by temporal changes in scattering. Nature 405, 445–448 (2000).

    Article  Google Scholar 

  28. Laske, G. & Masters, G. Limits on differential rotation of the inner core from an analysis of the Earth’s free oscillations. Nature 402, 66–69 (1999).

    Article  Google Scholar 

  29. Isse, T. & Nakanishi, I. Inner-core anisotropy beneath Australia and differential rotation. Geophys. J. Int. 151, 255–263 (2002).

    Article  Google Scholar 

  30. Krasnoshchekov, D.N., Kaazik, P.B. & Ovtchinnikov, V.M. Seismological evidence for mosaic structure of the surface of the Earth’s inner core. Nature 435, 483–487 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 204995. We thank M. Dumberry and V. Cormier for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

L.W. compiled and analysed the data and produced the manuscript and figures. J.I. wrote the cross-correlation code. J.I. and A.D. supervised the analysis. All authors discussed the results and implications at all stages.

Corresponding author

Correspondence to Lauren Waszek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waszek, L., Irving, J. & Deuss, A. Reconciling the hemispherical structure of Earth’s inner core with its super-rotation. Nature Geosci 4, 264–267 (2011). https://doi.org/10.1038/ngeo1083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing