Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular genetic basis of the human Rhesus blood group system

Abstract

The Rhesus (RH) blood group locus is composed of two related structural genes, D and CcEe, that encode red cell membrane proteins carrying the D, Cc and Ee antigens. As demonstrated previously, the RhD–positive/RhD–negative polymorphism is associated with the presence or the absence of the D gene. Sequence analysis of transcripts and genomic DNA from individuals that belong to different Rh phenotypes were performed to determine the molecular basis of the C/c and E/e polymorphisms. The E and e alleles differ by a single nucleotide resulting in a Pro226Ala substitution, whereas the C and c alleles differ by six nucleotides producing four amino acid substitutions Cys16Trp, He60Leu, Ser68Asn and Ser103Pro. With the recent cloning of the RhD gene, these findings provide the molecular genetic basis that determine D, C, c, E and e specificities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Race, R.R. & Sanger, R. Blood Groups in Man, 6th edn (Blackwell, Oxford, 1975).

    Google Scholar 

  2. Petz, L.D. & Garratty, G. Acquired immune hemolytic anemias (Churchill Livingstone, New York, 1980).

    Google Scholar 

  3. Mollison, P.L., Engelfriet, C.P. & Contreras, M. Blood Transfusion in Clinical Medicine 9th edn (Blackwell, Oxford, 1992).

    Google Scholar 

  4. Sturgeon, P. Hematological observations on the anemia associated with blood type Rh-null. Blood 36, 310–320 (1970).

    CAS  PubMed  Google Scholar 

  5. Nash, R. & Shojania, A.M. Hematological aspect of Rh deficiency syndrome: a case report and review of the literature. Am. J. Hematol. 24, 267–275 (1987).

    Article  CAS  Google Scholar 

  6. Lauf, P.K. & Joiner, C.H. Increased potassium transport and ouabain binding in human Rh-null red blood cells. Blood 48, 457–468 (1976).

    CAS  PubMed  Google Scholar 

  7. Ballas, S. et al. Red cell membranes and cation deficiency in Rh null syndrome. Blood 63, 1046–1055 (1984).

    CAS  PubMed  Google Scholar 

  8. Kuypers, F. et al. Rh-null human erythrocytes have an abnormal membrane phospholipid organization. Biochem. J. 221, 931–934 (1984).

    Article  CAS  Google Scholar 

  9. Issitt, P.D. The Rh blood group system, 1988: Eight new antigens in nine years and some observations on the biochemistry and genetics of the system. Transl Med. Rev. 3, 1–12 (1989).

    Article  CAS  Google Scholar 

  10. Agre, P. & Cartron, J.P. Molecular biology of the Rh antigens. Blood 78, 551–563 (1991).

    CAS  PubMed  Google Scholar 

  11. Chérif-Zahar, B. et al. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc. natn Acad. Sci. U.S.A. 87, 6243–6247 (1990).

    Article  Google Scholar 

  12. Avent, N.D., Ridgwell, K., Tanner, M.J.A. & Anstee, D.J. cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Biochem. J. 271, 821–825 (1990).

    Article  CAS  Google Scholar 

  13. Le Van Kim, C. et al. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc. natn. Acad. Sci. U.S.A. 89, 10925–10929 (1992).

    Article  CAS  Google Scholar 

  14. Colin, Y. et al. Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood 78, 2747–2752 (1991).

    CAS  PubMed  Google Scholar 

  15. Le Van Kim, C. et al. Multiple Rh mRNAs isoforms are produced by alternative splicing and poly(A) site choice. Blood 80, 1074–1078 (1992).

    CAS  PubMed  Google Scholar 

  16. Blanchard, D. et al. Two-dimensional iodopeptide mapping demonstrates erythrocyte Rh D, c, and E polypeptides are structurally homologous but nonidentical. Blood 72, 1424–1427 (1988).

    CAS  PubMed  Google Scholar 

  17. Bloy, C. et al. Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c) and (E) antigens are carried by distinct polypeptide chains. Blood 72, 661–666 (1988).

    CAS  PubMed  Google Scholar 

  18. Saabori, A.M. et al. Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes. Proc. natn. Acad. Sci. U.S.A. 85, 4042–4045 (1988).

    Article  Google Scholar 

  19. Avent, N.D. et al. Protein-sequence studies of Rh-related polypeptides suggest the presence of at least two groups of proteins which associated in the human red cell membrane. Biochem. J. 256, 1043–1046 (1988).

    Article  CAS  Google Scholar 

  20. Hermand, P. et al. Immunochemical characterization of Rh proteins with antibodies raised against synthetic peptides. Blood 82, (1993).

  21. Tippett, P. A speculative model for the Rh blood groups. Ann. Hum. Genet. 50, 241 (1986).

    Article  CAS  Google Scholar 

  22. Yamamoto, F., Clausen, H., White, T., Marken, J. & Hakomori, S.I. Molecular genetic basis of the histo-blood group ABO system. Nature 345, 229–233 (1990).

    Article  CAS  Google Scholar 

  23. Landsteiner, K. Zur Kenntnis des antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zbl. Bakt. 27, 357–363 (1900).

    Google Scholar 

  24. Landsteiner, K. & Wiener, A.S. An agglutinable factor in human blood recognized by immune sera for rhesus blood. Proc. Soc. Exp. Biol. Med. 43, 223 (1940).

    Article  CAS  Google Scholar 

  25. Levine, P. & Stetson, R.E. An unusual case of intragroup agglutination. JAMA 113, 126–127 (1939).

    Article  Google Scholar 

  26. Izraeli, S., Pfleiderer, C. & Lion, T. Detection of gene expression by PCR amplification of RNA derived from frozen heparinized whole blood. Nucl. Acid. Res. 19, 6051 (1991).

    Article  CAS  Google Scholar 

  27. Goossens, M. & Kan, Y.Y. DNA analysis in the diagnosis of hemoglobin disorders. Meth. Enzymol. 76, 805–817 (1981).

    Article  CAS  Google Scholar 

  28. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouro, I., Colin, Y., Chérif-Zahar, B. et al. Molecular genetic basis of the human Rhesus blood group system. Nat Genet 5, 62–65 (1993). https://doi.org/10.1038/ng0993-62

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing