Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens

Abstract

Lung disease is the major cause of death in cystic fibrosis (CF), but there is no evidence for overt lung involvement at birth. We show here that the same is true for the gene targeted cftrm1HGu mutant mouse. Furthermore, this CF mouse model demonstrates an impaired capacity to clear Staphylococcus aureus and Burkholderia (Pseudomonas) cepacia, two opportunistic lung pathogens closely associated with lung disease in CF subjects. The cftrm1HGU homozygotes display mucus retention and frank lung disease in response to repeated microbial exposure. Thus, lung disease in the cftrm1HGU mouse develops in response to bacterial infection, establishing a model to dissect the pathogenesis of CF pulmonary disease and providing a clinically relevant end point to assess the efficacy of pharmacologic or genetic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riordan, J.R. et al. Identification of the cystic fibrosis gene; cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  2. Boat, T., Welsh, M.J. & Beaudet, A. Cystic Fibrosis In The Metabolic Basis of Inherited Disease (eds Scriver, C.L., Beaudet, A.L., Sly, W.S. & Valle, D.) 2649–2680 (McGraw-Hill, New York, 1989).

    Google Scholar 

  3. Kerem, B.-S. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1079 (1989).

    Article  CAS  Google Scholar 

  4. The cystic fibrosis genotype-phenotype consortium: correlation between genotype and phenotype in patients with cystic fibrosis. New Engl. J. Med. 329, 1308–1312 (1993).

  5. Mearns, M., Fibrosis: the first 50 years. In Cystic Fibrosis Current Topics Volume 1 (eds Dodge, J.A., Brock, D.J.H. & Widdicombe, J.H.) 217–250 (J. Wiley & Sons, Chichester, 1992).

    Google Scholar 

  6. Oppenhelmer, E.H. & Esterley, J.R. Pathology of cystic fibrosis: review of the literature and comparison with 146 autopsied cases. In Perspectives in Pediatric Pathology Volume 2 (eds Rosenberg, H.S. & Bolande, R.P.) 241–278 (Yearbook Medical Publishers, New York, 1976).

    Google Scholar 

  7. Gilligan, P.M. Microbiology of airway disease in patients with cystic fibrosis Clin. Microbiol. Rev. 4, 35–51 (1991).

    Article  CAS  Google Scholar 

  8. Govan, J.R.W. & Nelson, J.W. Microbiology of cystic fibrosis lung infections: themes and issues. J. Royal Soc. Med. 20 (Suppl), 11–18 (1993).

    Google Scholar 

  9. Dorin, J.R. et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215 (1992).

    Article  CAS  Google Scholar 

  10. Dorin, J.R. et al. Long term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild type Cftr gene expression. Mamm. Genome 5, 465–472 (1994).

    Article  CAS  Google Scholar 

  11. Dorin, J.R., Alton, E.W.F.W. & Porteous, D.J. Mouse models for cystic fibrosis. in Cystic Fibrosis: Current Topics Volume 2 (eds Dodge, J.A., Brock, D.J.H. & Widdicombe, J.H.) 3–31 (J. Wiley & Sons, Chichester, 1994).

    Google Scholar 

  12. Highsmith, W.E. et al. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. New Engl. J. Med. 331, 974–980 (1994).

    Article  CAS  Google Scholar 

  13. Sheppard, D.N. et al. Mutations in CFTR associated with mild-disease form Cl channels with altered pore properties. Nature 362, 160–164 (1993).

    Article  CAS  Google Scholar 

  14. Snouwaert, J.N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    Article  CAS  Google Scholar 

  15. Ratcliff, R. et al. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nature Genet. 4, 35–41 (1993).

    Article  CAS  Google Scholar 

  16. O'Neal, W.K. et al. A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Hum. molec. Genet. 2, 1561–1569 (1993).

    Article  CAS  Google Scholar 

  17. Anon. Pseudomonas cepacia- more than a harmless commensal. Lancet 339, 1385–1386 (1992).

  18. Isles, A. et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 104, 206–210 (1984).

    Article  CAS  Google Scholar 

  19. Tablan, O.C. et al. Colonization of the respiratory tract with Pseudomonas cepacia in cystic fibrosis patients: risk factors and outcomes. Chest 91, 527–532 (1987).

    Article  CAS  Google Scholar 

  20. Govan, J.R.W. et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342, 15–19 (1993).

    Article  CAS  Google Scholar 

  21. Govan, J.R.W. & Nelson, J.W. Microbiology of lung infection in cystic fibrosis. Brit. Med. Bull. 48, 912–930 (1992).

    Article  CAS  Google Scholar 

  22. Kubesch, P. et al. Genetic determinants of airways' colonisation with Pseudomonas aeruginosa in cystic fibrosis. Lancet 341, 189–193 (1993).

    Article  CAS  Google Scholar 

  23. Nelson, J.W., Butler, S.L., Krieg, D. & Govan, J.R.W. Virulence factors of Burkholderia cepacia. FEMS Immunol. Med. Microbiol. 8, 89–98 (1994).

    Article  CAS  Google Scholar 

  24. Yeates, D.B., Sturgess, J.M., Kahn, S.R., Levison, H. & Aspin, N. Mucociliary transport in trachea of patients with cystic fibrosis. Arch. Dis. child. 51, 28–33 (1976).

    Article  CAS  Google Scholar 

  25. Wood, R.E., Wanner, A. & Hirsch, J.A. Measurement of mucociliary airway clearance in patients with cystic fibrosis and its stimulation with terbutaline. Pediatr. Res. 8, 471–475 (1974).

    Article  Google Scholar 

  26. Smith, S. et al. Airway and intestinal bioelectric characteristics of the exon 10 insertional mouse model of cystic fibrosis: comparison with the features in man. Am. J. Physiol. (in the press).

  27. Caplen, N. et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Med. 1, 39–46 (1995).

    Article  CAS  Google Scholar 

  28. Englehardt, J.F. et al. Submucosal glands are the predominant site of CFTR expression in human bronchus. Nature Genet. 2, 240–248 (1992).

    Article  Google Scholar 

  29. Knowles, M., Gatzy, J. & Boucher, R.C. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. New Engl. J. Med. 305, 1489–1495 (1981).

    Article  CAS  Google Scholar 

  30. Alton, E.W.F.W. et al. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Thorax 47, 1010–1014 (1992).

    Article  CAS  Google Scholar 

  31. Hyde, S. et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362, 250–255 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, D., Dorin, J., McLachlan, G. et al. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet 9, 351–357 (1995). https://doi.org/10.1038/ng0495-351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0495-351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing