Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice with gene targetted prion protein alterations show that Prnp, Sine and Prni are congruent

Abstract

Classical genetic analysis has identified Sinc/Prni as the major gene controlling mouse scrapie incubation time. Sinc/Prni is linked to Prnp, the gene encoding the prion protein (PrP). Prnp alleles express distinct PrP protein variants, PrP A and PrP B, which arise from codon 108L/F and 189 T/V dimorphisms. Prnp genotype segregates with incubation time length which suggests, but does not prove, that incubation time is controlled by PrP dimorphisms, and that the Sinc/Prni and Prnp loci are congruent. We have used gene targetting to construct mice in which the endogenous Prnp allele has been modified to express PrP B instead of PrP A. Challenge with a mouse-adapted BSE strain results in dramatically shortened incubation times and demonstrates that PrP dimorphisms at codon 108 and/or 189 control incubation time, and that Sinc/Prni and Prnp are congruent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wells, G.A.H. et al. A novel progressuve sponigform encephalopathy in cattle. Vet. Rec. 121, 419–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Creutzfeldt, H.G. Über eine eigenartige herdformige Erkrankung des Zentralnervensystems. Z. Gesamte Neurol. Psychiatrie 57, 247–250 (1920).

    Article  Google Scholar 

  3. Jakob, A. Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertem anatomischen Befunden (spastische Pseudosklerose-Encephalomyopathie mit diseminierten Degenerationsherden). Z. Gesamte Neurol. Psychiatrie 64, 147–228 (1921).

    Article  Google Scholar 

  4. Gerstmann, J., Straussler, E. & Scheinker, I. Über eine eigenartige herediatar-familare Erkankung des Zentralnervensystems zugleich ein Beitrag zur Frage des vorzeitigen lokalen Alterns. Z. Neurol. 154, 736–762 (1936).

    Google Scholar 

  5. Gadjusek, D.C. & Zigas, V. Degenerative disease of the central nervous system in New Guinea: epidemic occurrence of “ Kuru rdquo; in the native population. New Engl. J. Med. 257, 974–978 (1957).

    Article  Google Scholar 

  6. Lugaresi, E. et al Fatal Familial Insomnia and dysautonomia with selective degeneration of thalamic nuclei. New Engl. J. Med. 315, 997–1003 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. DeArmond, S.J. et al Identification of prion amyloid filaments in scrapie-infected brain. Cell 41, 221–235 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Hope, J. et al The major polypeptide of scrapie associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBOJ. 10, 2591–2597 (1986).

    Article  Google Scholar 

  9. Bell, J.E. & Ironside, J.W. Neuropathology of spongiform encephalopathies in humans. B. Med. Bull. 49, 738–777 (1993).

    Article  CAS  Google Scholar 

  10. Hainfellner, J.A. et al Pathology and immunocytochemistry of a Kuru Brain. Brain Pathology 7, 547–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Chandler, R.L. Encephalopathy in mice produced with scrapie brain material. Lancet 1. 1378–1379 (1961).

    Article  CAS  PubMed  Google Scholar 

  13. Dickinson, A.G. & MacKay, J.M.K. Genetical control of the incubation period in mice of the neurological disease, scrapie. Heredity 19, 279–288 (1964).

    Article  CAS  PubMed  Google Scholar 

  14. Dickinson, A.G., Meikle, V. & Fraser, H. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Comp. Path. 78, 293–299 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Carlson, G. et al. Linkage of prion protein and scrapie incubation time genes. Cell 46, 503–511 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Carlson, G. et al Genetics and polymorphism of the mouse prion gene complex: the control of scrapie incubation time. Mol. Cell. Biol. 8, 5528–5540 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hunter, N., Hope, J., McConnell, I. & Dickinson, A.G. Linkage of the scrapie associated fibril protein (PrP) gene and Sine using congenic mice and restriction fragment length polymorphism analysis. J. Gen. Virol. 68, 2711–2716 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Westaway, D. et al Distinct prion proteins in short and long scrapie incubation period mice. Cell 51, 561–662 (1987).

    Article  Google Scholar 

  19. Carlson, G., Ebeling, C., Torchia, M., Westaway, D. & Prusiner, S.B. Delimiting the location of the scrapie prion incubation time gene on chromosome 2 of the mouse. Genetics 133, 979–988 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Race, R.E., Graham, K., Ernst, D. & Chesebro, B. Analysis of linkage between scrapie incubation period and the prion protein gene in mice. J. Gen. Virol. 71, 493–497 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Bruce, M.E., McConnell, I., Fraser, H. & Dickinson, A.G. The disease characteristics of different strains of scrapie in Sine congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72, 595–603 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Hunter, N. et al Are Sine and the PrP gene congruent -evidence from PrP gene analysis in Sine congenic mice. J. Gen. Virol 73, 2751–2755 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Westaway, D. et al Paradoxical shortening of scrapie incubation times by expression of prion protein transgenes derived from long incubation period mice. Neuron 7, 59–68 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Carlson, G. et al Prion isolate specified allotype interactions between the cellular and scrapie prion proteins in congenic and transgenic mice. Proc Natl. Acad. Sci. USA 91, 5690–5694 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruce, M.E. & Dickinson, A.G. Genetic control of amyloid plaque production and incubation period in scrapie infected mice. J. Neuropath. Exp. Neurol. 44, 285–294 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, R.C. et al Double replacement gene targetting for the production of a series of mouse strains with different prion protein gene alterations Biotechnology 13, 999–1004 (1995).

    CAS  PubMed  Google Scholar 

  27. Magin, T.M., McWhir, J. & Melton, D.W. A new mouse embryonic stem cell line with good germ line contribution and targetting frequency. Nucleic Acids Res. 20, 3795–3796 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simpson, E.M. et al Genetic variation among 129 substrains and its importance fortargetted mutagenesis in mice. Nature Genet. 16, 19–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Manson, J.C., Clarke, A.R., McBride, P.A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 13, 331–340 (1994).

    Google Scholar 

  30. Westaway, D. et al. Structure and polymorphism of the mouse prion protein gene. Proc. Natal. Acad. Sci. USA 91, 6418–6422 (1994).

    Article  CAS  Google Scholar 

  31. Baybutt, H. & Manson, J. Characterisation of two promoters for prion protein (PrP) gene expression in neuronal cells. Gene 184, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Prusiner, S.B. et al Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Telling, G.C. et al. Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Devel. 10, 1736–1750 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Prusiner, S.B. et al Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc. Natal. Acad. Sci. USA 90, 10608–10612 (1993).

    Article  CAS  Google Scholar 

  37. Sakaguchi, S. et al Accumulation of proteinase K-resistant Prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob Disease agent. J. Virol. 69, 7586–7592 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Manson, J.C., McBride, P. & Hope, J. Expression of the PrP gene in the brain of Sine congenic mice and its relationship to the development of scrapie. Neurodegeneration 1, 45–52 (1992).

    Google Scholar 

  39. Meyer, R.K. et al Separation and properties of cellular and scrapie prion proteins. Proc Natal. Acad. Sci. USA 83, 2310–2314 (1986).

    Article  CAS  Google Scholar 

  40. Farquhar, C.F. et al Protease resistant PrP deposition in brain and non-central nervous system tissues of a murine model of bovine spongiform encephalopathy. J. Gen. Virol 77, 1941–1946 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Fraser, H. & Dickinson, A.G. Distribution of experimentally induced scrapie lesions in the brain. Nature 216, 1310–1311 (1967).

    Article  CAS  PubMed  Google Scholar 

  42. Fraser, H. & Dickinson, A.G. The sequential development of the brain lesions of scrapie in three strains of mice. J. Comp. Path. 78, 301–311 (1968).

    Article  CAS  PubMed  Google Scholar 

  43. Kingsbury, D.T. et al. Genetic control of scrapie and Creutzfeldt-Jakob disease in mice. J. Immunology 131, 491–496 (1983).

    CAS  Google Scholar 

  44. Bruce, M., Chree, A., McConnell, I. & Wells, G.A.H. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil. Trans. R. Soc. Lond. B 343, 405–411 (1994).

    Article  CAS  Google Scholar 

  45. Fraser, H. The pathology of natural and experimental scrapie. In: Slow Virus Diseases of Animals and Man (ed. R.H. Kimberlin. Amsterdam) 267–305 (1976).

  46. Bruce, M.E., McBride, P.A. & Farquhar, C.F. Precise targetting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci. Lett. 102, 1–6 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Hecker, R. et al Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters. Genes Devel 6, 1213–1228 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth. Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  49. Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. & Melton, D.W. Germline transmission and expression of a corrected HPRT gene produced by gene targetting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Fraser, H., Bruce, M.E., Chree, A., McConnell, I. & Wells, G.A.H. Transmission of bovine spongiform encephalopathy and scrapie to mice. J. Gen. Virol. 73, 1891–1897 (1992).

    Article  PubMed  Google Scholar 

  51. Sternberger, L.A., Hardy, P.H., Cuculis, J.J. & Meyer, H. The unlabelled antibody-enzyme method of immunohistochemistry. Preparation of soluble antigen-antibody complex (horse-radish peroxidase-antihorseradish peroxidase) and its use in identifying spirochetes. J. Histochem. Cytochem. 18, 315–333 (1970).

    Article  CAS  PubMed  Google Scholar 

  52. Farquhar, C.F., Somerville, R.A. & Ritchie, L.A. Postmortem immunodiagnosis of scrapie and bovine spongiform encephalopathy J. Virol. Meth. 24, 215–222 (1989).

    Article  CAS  Google Scholar 

  53. Farquhar, C.F. et al A review of the detection of PrPSc. In: Proceedings of a Consultation on BSE with the Scientific Veterinary Committee of the Commission of the European Communities 301–313 (European Commission, Brussels, 1993).

  54. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Manson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, R., Hope, J., McBride, P. et al. Mice with gene targetted prion protein alterations show that Prnp, Sine and Prni are congruent. Nat Genet 18, 118–125 (1998). https://doi.org/10.1038/ng0298-118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing