Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

RNA sequencing shows no dosage compensation of the active X-chromosome

Abstract

Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) 1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of 0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from 1 in larvae to 0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno's hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of gene expressions measured by microarray and RNA-Seq6,11,12,13.
Figure 2: Comparisons of RNA-Seq gene expression levels between the X chromosome and autosomes in 12 human tissues and 3 mouse tissues11,12,13,16.
Figure 3: Comparison of RNA-Seq gene expression levels of the X chromosome and autosomes in C. elegans19.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ohno, S. Sex Chromosomes and Sex Linked Genes (Springer Verlag, Berlin, Germany, 1967).

  2. Payer, B. & Lee, J.T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  Google Scholar 

  3. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996).

    Article  CAS  Google Scholar 

  4. Straub, T. & Becker, P.B. Dosage compensation: the beginning and end of generalization. Nat. Rev. Genet. 8, 47–57 (2007).

    Article  CAS  Google Scholar 

  5. Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 (2006).

    Article  Google Scholar 

  6. Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53 (2006).

    Article  CAS  Google Scholar 

  7. Draghici, S., Khatri, P., Eklund, A.C. & Szallasi, Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 22, 101–109 (2006).

    Article  CAS  Google Scholar 

  8. Liao, B.Y. & Zhang, J. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol. Biol. Evol. 23, 530–540 (2006).

    Article  CAS  Google Scholar 

  9. Fu, X. et al. Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10, 161 (2009).

    Article  Google Scholar 

  10. Held, G.A., Grinstein, G. & Tu, Y. Modeling of DNA microarray data by using physical properties of hybridization. Proc. Natl. Acad. Sci. USA 100, 7575–7580 (2003).

    Article  CAS  Google Scholar 

  11. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  Google Scholar 

  12. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  13. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  14. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  15. Smith, A.M. et al. Quantitative phenotyping via deep barcode sequencing. Genome Res. 19, 1836–1842 (2009).

    Article  CAS  Google Scholar 

  16. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  Google Scholar 

  17. Namekawa, S.H. et al. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol. 16, 660–667 (2006).

    Article  CAS  Google Scholar 

  18. Meyer, B.J., McDonel, P., Csankovszki, G. & Ralston, E. Sex and X-chromosome-wide repression in Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 69, 71–79 (2004).

    Article  CAS  Google Scholar 

  19. Hillier, L.W. et al. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res. 19, 657–666 (2009).

    Article  CAS  Google Scholar 

  20. Lin, H. et al. Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol. 5, e326 (2007).

    Article  Google Scholar 

  21. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  Google Scholar 

  22. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  Google Scholar 

  23. Hillier, L.W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    Article  CAS  Google Scholar 

  24. Nacher, J.C. & Akutsu, T. Recent progress on the analysis of power-law features in complex cellular networks. Cell Biochem. Biophys. 49, 37–47 (2007).

    Article  CAS  Google Scholar 

  25. Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).

    Article  CAS  Google Scholar 

  26. Schrimpf, S.P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 7, e48 (2009).

    Article  Google Scholar 

  27. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  Google Scholar 

  28. Qian, W. & Zhang, J. Gene dosage and gene duplicability. Genetics 179, 2319–2324 (2008).

    Article  Google Scholar 

  29. Lahn, B.T., Pearson, N.M. & Jegalian, K. The human Y chromosome, in the light of evolution. Nat. Rev. Genet. 2, 207–216 (2001).

    Article  CAS  Google Scholar 

  30. Adler, D.A. et al. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc. Natl. Acad. Sci. USA 94, 9244–9248 (1997).

    Article  CAS  Google Scholar 

  31. Vicoso, B. & Charlesworth, B. Evolution on the X chromosome: unusual patterns and processes. Nat. Rev. Genet. 7, 645–653 (2006).

    Article  CAS  Google Scholar 

  32. Ellegren, H. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5, 40 (2007).

    Article  Google Scholar 

  33. Itoh, Y. et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2 (2007).

    Article  Google Scholar 

  34. Zha, X. et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 39, 315–321 (2009).

    Article  CAS  Google Scholar 

  35. Mank, J.E. The W, X, Y and Z of sex-chromosome dosage compensation. Trends Genet. 25, 226–233 (2009).

    Article  CAS  Google Scholar 

  36. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  Google Scholar 

  37. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Article  CAS  Google Scholar 

  38. Carrel, L. & Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.-Y. Liao for sharing his processed mouse proteomic data, Y. Jiang for assistance in statistical analysis and B.-Y. Liao, J. Lu, O. Podlaha, P. Shi, W. Qian, C.-I. Wu and Y. Xing for valuable comments. Part of the work was conducted in the laboratory of Peng Shi at the State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology. This work was supported by research grants from the US National Institutes of Health (to J.Z.), the National Natural Science Foundation of China (90717115 and 30871371 to X.H.; 11001280 to Xueqin Wang) and the Tianyuan Fund for Mathematics (10926200 to Xueqin Wang).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and J.Z. conceived the study. Y.X., X.C. and Z.C. produced data. X.H., X.C., Y.X., J.Z., Xunzhang Wang, S.S. and Xueqin Wang analyzed data. X.H., Xunzhang Wang and S.S. provided reagents. X.H. and J.Z. wrote the paper.

Corresponding authors

Correspondence to Jianzhi Zhang or Xionglei He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–15 and Supplementary Figures 1–5. (PDF 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Chen, X., Chen, Z. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet 42, 1043–1047 (2010). https://doi.org/10.1038/ng.711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing